The mechanism of the light‐induced spin crossover of the [Fe(bpy)3]2+ complex (bpy=2,2′‐bipyridine) has been studied by combining accurate electronic‐structure calculations and time‐dependent approaches to calculate intersystem‐crossing rates. We investigate how the initially excited metal‐to‐ligand charge transfer (MLCT) singlet state deactivates to the final metastable high‐spin state. Although ultrafast X‐ray free‐electron spectroscopy has established that the total timescale of this process is on the order of a few tenths of a picosecond, the details of the mechanisms still remain unclear. We determine all the intermediate electronic states along the pathway from low spin to high spin and give estimates for the deactivation times of the different stages. The calculations result in a total deactivation time on the same order of magnitude as the experimentally determined rate and indicate that the complex can reach the final high‐spin state by means of different deactivation channels. The optically populated excited singlet state rapidly decays to a triplet state with an Fe d6() configuration either directly or by means of a triplet MLCT state. This triplet ligand‐field state could in principle decay directly to the final quintet state, but a much faster channel is provided by internal conversion to a lower‐lying triplet state and subsequent intersystem crossing to the high‐spin state. The deactivation rate to the low‐spin ground state is much smaller, which is in line with the large quantum yield reported for the process.
We present three formulas for calculating intersystem crossing rates in the Condon approximation to the golden rule by means of a time-dependent approach: an expression using the full time correlation function which is exact for harmonic oscillators, a second-order cumulant expansion, and a short-time approximation of this expression. While the exact expression and the cumulant expansion require numerical integration of the time correlation function, the integration of the short-time expansion can be performed analytically. To ensure convergence in the presence of large oscillations of the correlation function, we use a Gaussian damping function. The strengths and weaknesses of these approaches as well as the dependence of the results on the choice of the technical parameters of the time integration are assessed on four test examples, i.e., the nonradiative S(1) ⇝ T(1) transitions in thymine, phenalenone, flavone, and porphyrin. The obtained rate constants are compared with previous results of a time-independent approach. Very good agreement between the literature values and the integrals over the full time correlation functions are observed. Furthermore, the comparison suggests that the cumulant expansion approximates the exact expression very well while allowing the interval of the time integration to be significantly shorter. In cases with sufficiently high vibrational density of states also the short-time approximation yields rates in good agreement with the results of the exact formula. A great advantage of the time-dependent approach over the time-independent approach is its excellent computational efficiency making it the method of choice in cases of large energy gaps, large numbers of normal modes, and high densities of final vibrational states.
The ground and low-lying excited states of the pyrimidine nucleo bases uracil, thymine, and 1-methylthymine have been characterized using ab initio coupled-cluster with approximate doubles (CC2) and a combination of density functional theory (DFT) and semiempirical multireference configuration interaction (MRCI) methods. Intersystem crossing rate constants have been determined perturbationally by employing a nonempirical one-center mean-field approximation to the Breit-Pauli spin-orbit operator for the computation of electronic coupling matrix elements. Our results clearly indicate that the S(2)((1)pi-->pi*)-->T(2)((3)n-->pi*) process cannot compete with the subpicosecond decay of the S(2) population due to spin-allowed nonradiative transitions, whereas the T(1)((3)pi-->pi*) state is populated from the intermediate S(1)((1)n-->pi*) state on a subnanosecond time scale. Hence, it is very unlikely that the S(1)((1)n-->pi*) state corresponds to the long-lived dark state observed in the gas phase.
In this work, we present the generalization of a time-dependent method for the calculation of intersystem crossing (ISC) rates in the Condon approximation. When ISC takes place between electronic states with the same orbital type, i.e., when the transition is forbidden according to the El-Sayed rules, it is necessary to go beyond the Condon approximation. Similar to the Herzberg-Teller expansion of the vibronic interaction, the electronic spin-orbit matrix elements are assumed to depend linearly on the nuclear coordinates. The ISC rate is then a sum of three contributions: a direct, mixed direct-vibronic, and vibronic term. The method, presented in this work, is based on the generating function formalism and the multi-mode harmonic oscillator approximation. In addition to the zero-temperature case, we implemented formulae for finite-temperature conditions assuming a Boltzmann population of vibrational levels in the initial state. Tests have been carried out for a variety of molecules for which literature data were available. We computed vibronic one-photon spectra of free-base porphyrin and free-base chlorin and calculated ISC rates for xanthone, thioxanthone, thionine, as well as free-base porphyrin and found excellent agreement with previous results. Quantitative rates for triplet formation in rhodamine A have been determined theoretically for the first time. We find the S1↝ T2 channel to be the major source of triplet rhodamine formation in the gas phase.
Electronic and vibrational gas phase spectra of 1-methylthymine (1MT) and 1-methyluracil (1MU) and their clusters with water are presented. Mass selective IR/UV double resonance spectra confirm the formation of pyrimidine-water clusters and are compared to calculated vibrational spectra obtained from ab initio calculations. In contrast to Y. He, C. Wu, W. Kong; J. Phys. Chem. A, 2004, 108, 94 we are able to detect 1MT/1MU and their water clusters via resonant two-photon delayed ionization under careful control of the applied water-vapor pressure. The long-living dark electronic state of 1MT and 1MU detected by delayed ionization, survives hydration and the photostability of 1MT/1MU cannot be attributed solely to hydration. Oxygen coexpansions and crossed-beam experiments indicate that the triplet state population is probably small compared to the (1)n pi* and/or hot electronic ground state population. Ab initio theory shows that solvation of 1MT by water does not lead to a substantial modification of the electronic relaxation and quenching of the (1)n pi* state. Relaxation pathways via (1)pi pi*(1)-n pi*(1) and (1)pi pi*-S(0) conical intersections and barriers have been identified, but are not significantly altered by hydration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.