Flaxseed is a rich source of the omega-3 fatty acid, alpha linolenic acid, the lignan secoisolariciresinol diglucoside and fiber. These compounds provide bioactivity of value to the health of animals and humans through their anti-inflammatory action, anti-oxidative capacity and lipid modulating properties. The characteristics of ingesting flaxseed or its bioactive components are discussed in this article. The benefits of administering flaxseed or the individual bioactive components on health and disease are also discussed in this review. Specifically, the current evidence on the benefits or limitations of dietary flaxseed in a variety of cardiovascular diseases, cancer, gastro-intestinal health and brain development and function, as well as hormonal status in menopausal women, are comprehensive topics for discussion.
Cardiovascular disease remains the leading cause of mortality and morbidity worldwide. The inclusion of functional foods and natural health products in the diet are gaining increasing recognition as integral components of lifestyle changes in the fight against cardiovascular disease. Several preclinical and clinical studies have shown the beneficial cardiovascular effects of dietary supplementation with flaxseed. The cardiovascular effects of dietary flaxseed have included an antihypertensive action, antiatherogenic effects, a lowering of cholesterol, an anti-inflammatory action, and an inhibition of arrhythmias. Its enrichment in the ω-3 fatty acid α-linolenic acid and the antioxidant lignan secoisolariciresinol diglucoside as well as its high fiber content have been implicated primarily in these beneficial cardiovascular actions. Although not as well recognized, flaxseed is also composed of other potential bioactive compounds such as proteins, cyclolinopeptides, and cyanogenic glycosides, which may also produce biological actions. These compounds could also be responsible for the cardiovascular effects of flaxseed. This article will not only summarize the cardiovascular effects of dietary supplementation with flaxseed but also review its bioactive compounds in terms of their properties, biological effects, and proposed mechanisms of action. It will also discuss promising research directions for the future to identify additional health-related benefits of dietary flaxseed.
Oxylipins are a group of fatty acid metabolites generated via oxygenation of polyunsaturated fatty acids and are involved in processes such as inflammation, immunity, pain, vascular tone, and coagulation. As a result, oxylipins have been implicated in many conditions characterized by these processes, including cardiovascular disease and aging. The best characterized oxylipins in relation to cardiovascular disease are derived from the ω-6 fatty acid arachidonic acid. These oxylipins generally increase inflammation, hypertension, and platelet aggregation, although not universally. Similarly, oxylipins derived from the ω-6 fatty acid linoleic acid generally have more adverse than beneficial cardiovascular effects. Alternatively, most oxylipins derived from 20- and 22-carbon ω-3 fatty acids have anti-inflammatory, antiaggregatory, and vasodilatory effects that help explain the cardioprotective effects of these fatty acids. Much less is known regarding the oxylipins derived from the 18-carbon ω-3 fatty acid α-linolenic acid, but clinical trials with flaxseed supplementation have indicated that these oxylipins can have positive effects on blood pressure. Normal aging also is associated with changes in oxylipin levels in the brain, vasculature, and other tissues, indicating that oxylipin changes with aging may be involved in age-related changes in these tissues. A small number of trials in humans and animals with interventions that contain either 18-carbon or 20- and 22-carbon ω-3 fatty acids have indicated that dietary-induced changes in oxylipins may be beneficial in slowing the changes associated with normal aging. In summary, oxylipins are an important group of molecules amenable to dietary manipulation to target cardiovascular disease and age-related degeneration. Oxylipins are an important group of fatty acid metabolites amenable to dietary manipulation. Because of the role they play in cardiovascular disease and in age-related degeneration, oxylipins are gaining recognition as viable targets for specific dietary interventions focused on manipulating oxylipin composition to control these biological processes.
Food quality and nutritional habits strongly influence human health status. Extensive research has been conducted to confirm that foods rich in biologically active nutrients have a positive impact on the onset and development of different pathological processes, including cardiovascular diseases. However, the underlying mechanisms by which dietary compounds regulate cardiovascular function have not yet been fully clarified. A growing number of studies confirm that bioactive food components modulate various signaling pathways which are involved in heart physiology and pathology. Recent evidence indicates that microRNAs (miRNAs), small single-stranded RNA chains with a powerful ability to influence protein expression in the whole organism, have a significant role in the regulation of cardiovascular-related pathways. This review summarizes recent studies dealing with the impact of some biologically active nutrients like polyunsaturated fatty acids (PUFAs), vitamins E and D, dietary fiber, or selenium on the expression of many miRNAs, which are connected with cardiovascular diseases. Current research indicates that the expression levels of many cardiovascular-related miRNAs like miRNA-21, -30 family, -34, -155, or -199 can be altered by foods and dietary supplements in various animal and human disease models. Understanding the dietary modulation of miRNAs represents, therefore, an important field for further research. The acquired knowledge may be used in personalized nutritional prevention of cardiovascular disease or the treatment of cardiovascular disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.