The application of machine learning (ML) for use in generating insights and making predictions on new records continues to expand within the medical community. Despite this progress to date, the application of time series analysis has remained underexplored due to complexity of the underlying techniques. In this study, we have deployed a novel ML, called automated time series (AutoTS) machine learning, to automate data processing and the application of a multitude of models to assess which best forecasts future values. This rapid experimentation allows for and enables the selection of the most accurate model in order to perform time series predictions. By using the nation-wide ICD-10 (International Classification of Diseases, Tenth Revision) dataset of hospitalized patients of Romania, we have generated time series datasets over the period of 2008–2018 and performed highly accurate AutoTS predictions for the ten deadliest diseases. Forecast results for the years 2019 and 2020 were generated on a NUTS 2 (Nomenclature of Territorial Units for Statistics) regional level. This is the first study to our knowledge to perform time series forecasting of multiple diseases at a regional level using automated time series machine learning on a national ICD-10 dataset. The deployment of AutoTS technology can help decision makers in implementing targeted national health policies more efficiently.
The epidemiology of neglected tropical diseases (NTD) is persistently underprioritized, despite NTD being widespread among the poorest populations and in the least developed countries on earth. This situation necessitates thorough and efficient public health intervention. Romania is at the brink of becoming a developed country. However, this South-Eastern European country appears to be a region that is susceptible to an underestimated burden of parasitic diseases despite recent public health reforms. Moreover, there is an evident lack of new epidemiologic data on NTD after Romania’s accession to the European Union (EU) in 2007. Using the national ICD-10 dataset for hospitalized patients in Romania, we generated time series datasets for 2008–2018. The objective was to gain deep understanding of the epidemiological distribution of three selected and highly endemic parasitic diseases, namely, ascariasis, enterobiasis and cystic echinococcosis (CE), during this period and forecast their courses for the ensuing two years. Through descriptive and inferential analysis, we observed a decline in case numbers for all three NTD. Several distributional particularities at regional level emerged. Furthermore, we performed predictions using a novel automated time series (AutoTS) machine learning tool and could interestingly show a stable course for these parasitic NTD. Such predictions can help public health officials and medical organizations to implement targeted disease prevention and control. To our knowledge, this is the first study involving a retrospective analysis of ascariasis, enterobiasis and CE on a nationwide scale in Romania. It is also the first to use AutoTS technology for parasitic NTD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.