A major limitation in developing applications for the use of human embryonic stem cells (HESCs) is our lack of knowledge of their responses to specific cues that control self-renewal, differentiation, and lineage selection. HESCs are most commonly maintained on inactivated mouse embryonic fibroblast feeders in medium supplemented with FCS, or proprietary replacements such as knockout serum-replacement together with FGF-2. These undefined culture conditions hamper analysis of the mechanisms that control HESC behavior. We have now developed a defined serum-free medium, hESF9, for the culture of HESCs on a type I-collagen substrate without feeders. In contrast to other reported media for the culture of HESCs, this medium has a lower osmolarity (292 mosmol/liter), l -ascorbic acid-2-phosphate (0.1 μg/ml), and heparin. Insulin, transferrin, albumin conjugated with oleic acid, and FGF-2 (10 ng/ml) were the only protein components. Further, we found that HESCs would proliferate in the absence of exogenous FGF-2 if heparin was also present. However, their growth was enhanced by the addition of FGF-2 up to 10 ng/ml although higher concentrations were deleterious in the presence of heparin.
Extracellular matrix (ECM) components regulate stem-cell behavior, although the exact effects elicited in embryonic stem (ES) cells are poorly understood. We previously developed a simple, defined, serum-free culture medium that contains leukemia inhibitory factor (LIF) for propagating pluripotent mouse embryonic stem (mES) cells in the absence of feeder cells. In this study, we determined the effects of ECM components as culture substrata on mES cell selfrenewal in this culture medium, comparing conventional culture conditions that contain serum and LIF with gelatin as a culture substratum. mES cells remained undifferentiated when cultured on type I and type IV collagen or poly-D-lysine. However, they differentiated when cultured on laminin or fibronectin as indicated by altered morphologies, the activity of alkaline phosphatase decreased, Fgf5 expression increased, and Nanog and stage-specific embryonic antigen 1 expression decreased. Under these conditions, the activity of signal transducer and activator of transcription (STAT)3 and Akt/protein kinase B (PKB), which maintain cell self-renewal, decreased. In contrast, the extracellular signal-regulated kinase (ERK)1/2 activity, which negatively controls cell self-renewal, increased. In the defined conditions, mES cells did not express collagen-binding integrin subunits, but they expressed laminin-and fibronectin-binding integrin subunits. The expression of some collagen-binding integrin subunits was downregulated in an LIF concentration-dependent manner. Blocking the interactions between ECM and integrins inhibited this differentiation. Conversely, the stimulation of ECM-integrin interactions by overexpressing collagen-binding integrin subunits induced differentiation of mES cells cultured on type I collagen. The results of the study indicated that inactivation of the integrin signaling is crucial in promoting mouse embryonic stem cell self-renewal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.