Unraveling the mechanisms by which the molecular manipulation of genes of interest enhances cognitive function is important to establish genetic therapies for cognitive disorders. Although CREB is thought to positively regulate formation of long-term memory (LTM), gain-of-function effects of CREB remain poorly understood, especially at the behavioral level. To address this, we generated four lines of transgenic mice expressing dominant active CREB mutants (CREB-Y134F or CREB-DIEDML) in the forebrain that exhibited moderate upregulation of CREB activity. These transgenic lines improved not only LTM but also long-lasting long-term potentiation in the CA1 area in the hippocampus. However, we also observed enhanced short-term memory (STM) in contextual fear-conditioning and social recognition tasks. Enhanced LTM and STM could be dissociated behaviorally in these four lines of transgenic mice, suggesting that the underlying mechanism for enhanced STM and LTM are distinct. LTM enhancement seems to be attributable to the improvement of memory consolidation by the upregulation of CREB transcriptional activity, whereas higher basal levels of BDNF, a CREB target gene, predicted enhanced shorter-term memory. The importance of BDNF in STM was verified by microinfusing BDNF or BDNF inhibitors into the hippocampus of wild-type or transgenic mice. Additionally, increasing BDNF further enhanced LTM in one of the lines of transgenic mice that displayed a normal BDNF level but enhanced LTM, suggesting that upregulation of BDNF and CREB activity cooperatively enhances LTM formation. Our findings suggest that CREB positively regulates memory consolidation and affects memory performance by regulating BDNF expression.
Objectives IgG4-related disease (IgG4-RD) is a chronic, systemic, inflammatory condition of unknown aetiology. We have recently described clonally expanded circulating CD4+ cytotoxic T lymphocytes (CTLs) in IgG4-RD that infiltrate affected tissues where they secrete interleukin (IL)-1β and transforming growth factor -β1 (TGF-β1). In this study, we sought to examine the role of CD4+ CTLs in the pathogenesis of IgG4-related dacryoadenitis and sialoadenitis (IgG4-DS) and to determine whether these cells secrete interferon-gamma (IFN-γ) at lesional sites. Methods Salivary glands of 25 patients with IgG4-DS, 22 patients with Sjögren’s syndrome (SS), 12 patients with chronic sialoadenitis (CS) and 12 healthy controls were analysed in this study. Gene expression analysis was performed on submandibular glands (SMGs) from five patients with IgG4-DS, three with CS and three healthy controls. Infiltrating CD4+ CTLs were examined by quantitative multicolour imaging in tissue samples from 20 patients with IgG4-DS, 22 patients with SS, 9 patients with CS and 9 healthy controls. Results In IgG4-DS tissues, nine genes associated with CD4+ CTLs were overexpressed. The expression of granzyme A (GZMA) mRNA was significantly higher in samples from patients with IgG4-RD compared with corresponding tissues from SS and healthy controls. Quantitative imaging showed that infiltrating CD4+ GZMA+ CTLs were more abundant in patients with IgG4-DS than in the other groups. The ratio of CD4+GZMA+ CTLs in SMGs from patients with IgG4-DS correlated with serum IgG4 concentrations and the number of affected organs. A large fraction of CD4+GZMA+ CTLs in SMGs from patients with IgG4-DS secreted IFN-γ. Conclusions The pathogenesis of IgG4-DS is associated with tissue infiltration by CD4+GZMA+ CTLs that secrete IFN-γ.
Tumor-associated macrophages (TAMs) promote cancer cell proliferation, invasion, and metastasis by producing various mediators. Although preclinical studies demonstrated that TAMs preferentially express CD163 and CD204, the TAM subsets in oral squamous cell carcinoma (OSCC) remain unknown. In this study, we examined the expression and role of TAM subsets in OSCC. Forty-six patients with OSCC were analyzed for expression of TAMs in biopsy samples by immunohistochemistry. We examined TAM subsets and their production of immune suppressive molecules (IL-10 and PD-L1) in peripheral blood mononuclear cells from three OSCC patients by flow cytometry. CD163 was detected around the tumor or connective tissue, while CD204 was detected in/around the tumors. Flow cytometric analysis revealed that CD163+CD204+ TAMs strongly produced IL-10 and PD-L1 in comparison with CD163+CD204− and CD163−CD204+ TAMs. Furthermore, the number of activated CD3+ T cells after co-culture with CD163+CD204+ TAMs was significantly lower than that after co-culture with other TAM subsets. In clinical findings, the number of CD163+CD204+ TAMs was negatively correlated with that of CD25+ cells and 5-year progression-free survival. These results suggest that CD163+CD204+ TAMs possibly play a key role in the invasion and metastasis of OSCC by T-cell regulation via IL-10 and PD-L1 production.
BackgroundThe objective of this review was to summarize findings on aquatic exercise and balneotherapy and to assess the quality of systematic reviews based on randomized controlled trials.MethodsStudies were eligible if they were systematic reviews based on randomized clinical trials (with or without a meta-analysis) that included at least 1 treatment group that received aquatic exercise or balneotherapy. We searched the following databases: Cochrane Database Systematic Review, MEDLINE, CINAHL, Web of Science, JDream II, and Ichushi-Web for articles published from the year 1990 to August 17, 2008.ResultsWe found evidence that aquatic exercise had small but statistically significant effects on pain relief and related outcome measures of locomotor diseases (eg, arthritis, rheumatoid diseases, and low back pain). However, long-term effectiveness was unclear. Because evidence was lacking due to the poor methodological quality of balneotherapy studies, we were unable to make any conclusions on the effects of intervention. There were frequent flaws regarding the description of excluded RCTs and the assessment of publication bias in several trials. Two of the present authors independently assessed the quality of articles using the AMSTAR checklist.ConclusionsAquatic exercise had a small but statistically significant short-term effect on locomotor diseases. However, the effectiveness of balneotherapy in curing disease or improving health remains unclear.
IgG4-related dacryoadenitis and sialoadenitis (IgG4-DS) is characterized by bilateral swelling of glandular tissues with extensive fibrosis, and is immunologically considered a Th2-predominant disease. Recent studies reported that alternatively activated (M2) macrophages enhanced Th2 immune responses and fibrosis by production of pro-fibrotic factors (IL-10, IL-13 and CCL18). Therefore, we examined the association between M2 macrophages and fibrosis in submandibular glands from 7 patients with IgG4-DS, 10 patients with chronic sialoadenitis, 10 patients with Sjögren's syndrome, and 10 healthy subjects. The number of M2 macrophages in SMGs from patients with IgG4-DS was also significantly higher than in the other groups. Double immunofluorescence staining showed that IL-10 and CCL18 expression co-localized with M2 macrophage-marker (CD163). Furthermore, the SMG fibrosis score was positively correlated with the frequency of M2 macrophages in only IgG4-DS. These results indicate that IL-10 and CCL18 secreted by preferential M2 macrophages possibly play a key role in the development of severe fibrosis in IgG4-DS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.