Suc, an end product of photosynthesis, is metabolized by Suc synthase in sink organs as an initial step in the biosynthesis of storage products. Suc synthase activity is known to be regulated by reversible phosphorylation, but the details of this process are unclear at present. Rice SPK, a calcium-dependent protein kinase, is expressed uniquely in the endosperm of immature seed, and its involvement in the biosynthetic pathways of storage products was suggested. Antisense SPK transformants lacked the ability to accumulate storage products such as starch, but produced watery seed with a large amount of Suc instead, as the result of an inhibition of Suc degradation. Analysis of in vitro phosphorylation indicated that SPK phosphorylated specifically a Ser residue in Suc synthase that has been shown to be important for its activity in the degradation of Suc. This finding suggests that SPK is involved in the activation of Suc synthase. It appears that SPK is a Suc synthase kinase that may be important for supplying substrates for the biosynthesis of storage products.
MSM/Ms is an inbred mouse strain derived from a Japanese wild mouse, Mus musculus molossinus. In this study, we showed that MSM/Ms mice exhibit dominant resistance when crossed with susceptible FVB/N mice and subjected to the two-stage skin carcinogenesis protocol using 7,12-dimethylbenz(a)anthracene (DMBA)/ 12-O-tetradecanoylphorbol-13-acetate (TPA). A series of F1 backcross mice were generated by crossing p53(+/+) or p53(+/-) F1 (FVB/N × MSM/Ms) males with FVB/N female mice. These generated 228 backcross animals, approximately half of which were p53(+/-), enabling us to search for p53-dependent skin tumor modifier genes. Highly significant linkage for papilloma multiplicity was found on chromosomes 6 and 7 and suggestive linkage was found on chromosomes 3, 5 and 12. Furthermore, in order to identify stage-dependent linkage loci we classified tumors into three categories (<2mm, 2-6mm and >6mm), and did linkage analysis. The same locus on chromosome 7 showed strong linkage in groups with <2mm or 2-6mm papillomas. No linkage was detected on chromosome 7 to papillomas >6mm, but a different locus on chromosome 4 showed strong linkage both to papillomas >6mm and to carcinomas. This locus, which maps near the Cdkn2a/p19(Arf) gene, was entirely p53-dependent, and was not seen in p53 (+/-) backcross animals. Suggestive linkage conferring susceptibility to carcinoma was also found on chromosome 5. These results clearly suggest distinct loci regulate each stage of tumorigenesis, some of which are p53-dependent.
A simple method to purify volatile sesquiterpenes from recombinant Escherichia coli was developed using the cells that carried known sesquiterpene synthase (Tps) genes ZzZss2 (ZSS2) and ZoTps1. This method was applied for the purification and structural analyses of volatile sesquiterpenes produced by E. coli cells that carried unidentified Tps genes, which were isolated from the Aralia-genus edible plants belonging to the family Araliaceae. Recombinant cells carrying each Tps gene were cultured in the two-layer medium (n-octane/TB medium), and volatile sesquiterpenes trapped in n-octane were purified through two-phase partition, silica gel column chromatography, and reversed-phase preparative high-performance liquid chromatography, if necessary. Further, their structures were confirmed by nuclear magnetic resonance, [α], and gas chromatography-mass spectrometry analyses. Herein, the products of E. coli cells that carried two Tps gene (named AcTps1 and AcTps2) in Araria cordata "Udo" and a Tps gene (named AeTps1) in Aralia elata "Taranoki" were studied resulting in identifying functionalities of these cryptic Tps genes.
The cyanobacterium Anabaena sp. strain PCC 7120 exhibits dehydration tolerance. The regulation of gene expression in response to dehydration is crucial for the acquisition of dehydration tolerance, but the molecular mechanisms underlying dehydration responses remain unknown. In this study, the functions of the response regulator OrrA in the regulation of salt and dehydration responses were investigated. Disruption of orrA abolished or diminished the induction of hundreds of genes in response to salt stress and dehydration. Thus, OrrA is a principal regulator of both stress responses. In particular, OrrA plays a crucial role in dehydration tolerance because an orrA disruptant completely lost the ability to regrow after dehydration. Moreover, in the OrrA regulon, avaKa encoding a protein of unknown function was revealed to be indispensable for dehydration tolerance. OrrA and AvaK are conserved among the terrestrial cyanobacteria, suggesting their conserved functions in dehydration tolerance in cyanobacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.