The previously published atmospheric neutrino data did not distinguish whether muon neutrinos were oscillating into tau neutrinos or sterile neutrinos, as both hypotheses fit the data. Using data recorded in 1100 live-days of the Super-Kamiokande detector, we use three complementary data samples to study the difference in zenith angle distribution due to neutral currents and matter effects. We find no evidence favoring sterile neutrinos, and reject the hypothesis at the 99% confidence level. On the other hand, we find that oscillation between muon and tau neutrinos suffices to explain all the results in hand.
The cross section for coherent J/ψ photoproduction accompanied by at least one neutron on one side of the interaction point and no neutron activity on the other side, X n 0 n , is measured with the CMS experiment in ultra-peripheral PbPb collisions at √ s NN = 2.76 TeV. The analysis is based on a data sample corresponding to an integrated luminosity of 159 µb −1 , collected during the 2011 PbPb run. The J/ψ mesons are reconstructed in the dimuon decay channel, while neutrons are detected using zero degree calorimeters. The measured cross section is dσ coh X n 0 n /dy(J/ψ) = 0.36 ± 0.04 (stat) ± 0.04 (syst) mb in the rapidity interval 1.8 < |y| < 2.3. Using a model for the relative rate of coherent photoproduction processes, this X n 0 n measurement gives a total coherent photoproduction cross section of dσ coh /dy(J/ψ) = 1.82 ± 0.22 (stat) ± 0.20 (syst) ± 0.19 (theo) mb. The data strongly disfavour the impulse approximation model prediction, indicating that nuclear effects are needed to describe coherent J/ψ photoproduction in γ + Pb interactions. The data are found to be consistent with the leading twist approximation, which includes nuclear gluon shadowing. IntroductionPhoton-induced reactions are dominant in Ultra-Peripheral Collisions (UPC) of heavy ions, which involve electromagnetic interactions at large impact parameters of the colliding nuclei. Because of the extremely high photon flux in ultra-peripheral heavy-ion collisions which is proportional to Z 2 , where Z is the charge of the nucleus, photon-nucleus collisions at the LHC are abundant [1][2][3]. Furthermore, in UPCs the LHC can reach unprecedented photon-lead and photon-proton center-of-mass energies.Vector meson photoproduction in UPCs has received recent interest [3]. Exclusive J/ψ photoproduction off protons is defined by the reaction γ + p → J/ψ + p, with the characteristic features that, apart from the vector meson in the final state, no other particles are produced and the vector meson has a mean transverse momentum significantly lower than in inclusive reactions. Another characteristic feature is that in exclusive photoproduction the quantum numbers of the final state can be studied unambiguously. The γ + p → J/ψ + p production process has been studied by H1 and ZEUS collaborations at the electron-proton collider HERA [4][5][6], by the CDF collaboration in proton-antiproton collisions at the Tevatron [7], and by the ALICE and LHCb collaborations at the LHC, in proton-lead [8] and proton-proton collisions [9], respectively. Since the cross section of photoproduced vector mesons such as J/ψ, ψ(2S), and Υ(nS), in leading order perturbative QCD, is proportional to the gluon density squared in the target [10,11], the study of such diffractive processes in high-energy collisions is expected to provide insights into the role played by gluons in hadronic matter. As an example, a J/ψ produced at rapidity y is sensitive to the gluon distribution at x = (M J/ψ / √ s)e ±y at hard scales Q 2 ∼ M 2 J/ψ /4, where M J/ψ is the J/ψ mass, The CMS detectorThe...
A total of 137 upward stopping muons of minimum energy 1.6 GeV are observed by Super-Kamiokande during 516 detector live days. The measured muon flux is 0.39+/-0.04(stat.)+/-0.02(syst.)x10^{-13}cm^{-2}s^{-1}sr^{-1} compared to an expected flux of 0.73+/-0.16(theo.)x10^{-13}cm^{-2}s^{-1}sr^{-1}. Using our previously-published measurement of the upward through-going muon flux, we calculate the stopping/through-going flux ratio R}, which has less theoretical uncertainty. The measured value of R=0.22+/-0.02(stat.)+/-0.01(syst.) is significantly smaller than the value 0.37^{+0.05}_{-0.04}(theo.) expected using the best theoretical information (the probability that the measured R is a statistical fluctuation below the expected value is 0.39%). A simultaneous fitting to zenith angle distributions of upward stopping and through-going muons gives a result which is consistent with the hypothesis of neutrino oscillations with the parameters sin^2 2\theta >0.7 and 1.5x10^{-3} < \Delta m^2 < 1.5x10^{-2} eV^2 at 90% confidence level, providing a confirmation of the observation of neutrino oscillations by Super-Kamiokande using the contained atmospheric neutrino events.Comment: 15 pages, including 7 figures. Submitted to Physics Letters Revision fixes typo in author fiel
Because there was a significant correlation between VAS pain scale and salivary alpha-amylase, we suggest that this biomarker may be a good index for the objective assessment of pain intensity. In addition, a simple to use portable analyzer may be useful for such assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.