This review provides a broad overview of the state of research in the genetics of anxiety disorders (AD). Genetic epidemiological studies report a moderate level of familial aggregation (odds ratio: 4–6) and heritability estimates are about 30–50%. Twin studies suggest that the genetic architecture of AD is not isomorphic with their classifications, sharing risk factors with each other. So far, linkage and association studies of AD have produced inconclusive results. Genome‐wide association studies of AD can provide an unbiased survey of common genetic variations across the entire genome. Given the shared causes of AD that transcend our current diagnostic classifications, clustering anxiety phenotypes into broader groups may be a powerful approach to identifying susceptibility locus for AD. Using such a shared genetic risk factor, meta‐analyses of genome‐wide association studies of AD conducted by large consortia are needed. Environmental factors also make a substantial contribution to the cause of AD. Although candidate gene studies of gene by environmental (G × E) interaction have appeared recently, no genome‐wide search for G × E interactions have been performed. Epigenetic modification of DNA appears to have important effects on gene expression mediating environmental influences on disease risk. Given that G × E can be linked to an epigenetic modification, a combination analysis of genome‐wide G × E interaction and methylation could be an alternative method to find risk variants for AD. This genetic research will enable us to utilize more effective strategies for the prevention and treatment of AD in the near future.
BackgroundPanic disorder (PD) is considered to be a multifactorial disorder emerging from interactions among multiple genetic and environmental factors. To date, although genetic studies reported several susceptibility genes with PD, few of them were replicated and the pathogenesis of PD remains to be clarified. Epigenetics is considered to play an important role in etiology of complex traits and diseases, and DNA methylation is one of the major forms of epigenetic modifications. In this study, we performed an epigenome-wide association study of PD using DNA methylation arrays so as to investigate the possibility that different levels of DNA methylation might be associated with PD.MethodsThe DNA methylation levels of CpG sites across the genome were examined with genomic DNA samples (PD, N = 48, control, N = 48) extracted from peripheral blood. Methylation arrays were used for the analysis. β values, which represent the levels of DNA methylation, were normalized via an appropriate pipeline. Then, β values were converted to M values via the logit transformation for epigenome-wide association study. The relationship between each DNA methylation site and PD was assessed by linear regression analysis with adjustments for the effects of leukocyte subsets.ResultsForty CpG sites showed significant association with PD at 5% FDR correction, though the differences of the DNA methylation levels were relatively small. Most of the significant CpG sites (37/40 CpG sites) were located in or around CpG islands. Many of the significant CpG sites (27/40 CpG sites) were located upstream of genes, and all such CpG sites with the exception of two were hypomethylated in PD subjects. A pathway analysis on the genes annotated to the significant CpG sites identified several pathways, including “positive regulation of lymphocyte activation.”ConclusionsAlthough future studies with larger number of samples are necessary to confirm the small DNA methylation abnormalities associated with PD, there is a possibility that several CpG sites might be associated, together as a group, with PD.Electronic supplementary materialThe online version of this article (doi:10.1186/s13148-016-0307-1) contains supplementary material, which is available to authorized users.
Panic disorder (PD) is characterized by recurrent and unexpected panic attacks, subsequent anticipatory anxiety, and phobic avoidance. Recent epidemiological and genetic studies have revealed that genetic factors contribute to the pathogenesis of PD. We performed whole-exome sequencing on one Japanese family, including multiple patients with panic disorder, which identified seven rare protein-altering variants. We then screened these genes in a Japanese PD case–control group (384 sporadic PD patients and 571 controls), resulting in the detection of three novel single nucleotide variants as potential candidates for PD (chr15: 42631993, T>C in GANC; chr15: 42342861, G>T in PLA2G4E; chr20: 3641457, G>C in GFRA4). Statistical analyses of these three genes showed that PLA2G4E yielded the lowest p value in gene-based rare variant association tests by Efficient and Parallelizable Association Container Toolbox algorithms; however, the p value did not reach the significance threshold in the Japanese. Likewise, in a German case–control study (96 sporadic PD patients and 96 controls), PLA2G4E showed the lowest p value but again did not reach the significance threshold. In conclusion, we failed to find any significant variants or genes responsible for the development of PD. Nonetheless, our results still leave open the possibility that rare protein-altering variants in PLA2G4E contribute to the risk of PD, considering the function of this gene.
We herein report an association between TMEM132D and panic disorder (PD) in a Japanese population, evaluating the effects of HLA-DRB1*13:02, which we previously reported as a susceptibility genetic factor for PD. SNPs in TMEM132D showed significant associations with PD in subjects without HLA-DRB1*13:02 (rs4759997; P=5.02×10−6, odds ratio=1.50) but not in those with the HLA allele. TMEM132D might have a role in the development of PD in subjects without HLA-DRB1*13:02.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.