Abstract:In this paper, we analyze the Network and System Management (NSM) requirements and NSM data objects for the intrusion detection of power systems; NSM is an IEC 62351-7 standard. We analyze a SYN flood attack and a buffer overflow attack to cause the Denial of Service (DoS) attack described in NSM. After mounting the attack in our attack testbed, we collect a data set, which is based on attributes for the attack. We then run several data mining methods with the data set using the Waikato Environment for Knowledge Analysis (WEKA). In the results, we select the decision tree algorithms with high detection rates, and choose key attributes in high level components of the trees. When we run several data mining methods again with the data set of chosen key attributes, the detection rates of most data mining methods are higher than before. We prove that our selected attack attributes, and the proposed detection process, are efficient and suitable for intrusion detection in the smart grid environment.
Unmanned aerial vehicles (UAVs) are an emerging technology with the potential to revolutionize commercial industries and the public domain outside of the military. UAVs would be able to speed up rescue and recovery operations from natural disasters and can be used for autonomous delivery systems (e.g., Amazon Prime Air). An increase in the number of active UAV systems in dense urban areas is attributed to an influx of UAV hobbyists and commercial multi-UAV systems. As airspace for UAV flight becomes more limited, it is important to monitor and manage many UAV systems using modern collision avoidance techniques. In this paper, we propose a cloud-based web application that provides real-time flight monitoring and management for UAVs. For each connected UAV, detailed UAV sensor readings from the accelerometer, GPS sensor, ultrasonic sensor and visual position cameras are provided along with status reports from the smaller internal components of UAVs (i.e., motor and battery). The dynamic map overlay visualizes active flight paths and current UAV locations, allowing the user to monitor all aircrafts easily. Our system detects and prevents potential collisions by automatically adjusting UAV flight paths and then alerting users to the change. We develop our proposed system and demonstrate its feasibility and performances through simulation.
Background Peripheral artery disease (PAD) affects over 236 million people worldwide, and exercise interventions are commonly used to alleviate symptoms of this condition. However, no previous systematic review has evaluated the effects of mobile health (mHealth)–based exercise interventions for patients with PAD. Objective This study aimed to assess the effect of mHealth-based exercise interventions on walking performance, functional status, and quality of life in patients with PAD. Methods A systematic review and meta-analysis were conducted. We searched in seven databases to identify randomized controlled trials of patients with PAD published in English up to December 4, 2020. Studies were included if patients participated in mHealth-based exercise interventions and were assessed for walking performance. We analyzed pooled effect size on walking performance, functional status, and quality of life based on the standardized mean differences between groups. Results A total of seven studies were selected for the systematic review, and six studies were included in the meta-analysis. The duration of interventions in the included studies was 12 to 48 weeks. In the pooled analysis, when compared with the control groups, the mHealth-based exercise intervention groups were associated with significant improvements in pain-free walking (95% CI 0.13-0.88), maximal walking (95% CI 0.03-0.87), 6-minute walk test (6MWT) distance (95% CI 0.59-1.24), and walking distance (95% CI 0.02-0.49). However, benefits of the interventions on walking speed, stair-climbing ability, and quality of life were not observed. Conclusions mHealth-based exercise interventions for patients with PAD were beneficial for improving pain-free walking, maximal walking, and 6MWT distance. We found that exercise interventions using mHealth are an important strategy for improving the exercise effectiveness and adherence rate of patients with PAD. Future studies should consider the use of various and suitable functions of mHealth that can increase the adherence rates and improve the effectiveness of exercise.
Background Peripheral artery disease (PAD) is a cardiovascular disease that can be improved by risk factor modification. Mobile health (mHealth) intervention is an effective method of healthcare delivery to promote behavior changes. An mHealth platform can encourage consistent involvement of participants and healthcare providers for health promotion. This study aimed to develop an mHealth platform consisting of a smartphone application (app) synchronized with a wearable activity tracker and a web-based portal to support exercise intervention in patients with PAD. Methods This study was conducted based on an iterative development process, including analysis, design, and implementation. In the analysis phase, a literature review and needs assessment through semi-structured interviews (n = 15) and a questionnaire-based survey (n = 138) were performed. The initial prototype design and contents were developed based on the users’ requirements. In the implementation phase, multidisciplinary experts (n = 4) evaluated the heuristics, following which the mHealth platform was revised. User evaluation of the usability was performed by nurses (n = 4) and patients with PAD (n = 3). Results Through the development process, the functional requirements of the platform were represented through visual display, reminder, education, self-monitoring, goal setting, goal attainment, feedback, and recording. In-app videos of exercise and PAD management were produced to provide information and in-app automatic text messages were developed for user motivation. The final version of the platform was rated 67.86 out of 100, which indicated “good” usability. Conclusions The mHealth platform was designed and developed for patients with PAD and their healthcare providers. This platform can be used to educate and promote individualized exercise among patients with PAD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.