To overcome the low oral bioavailability of morin, a mixed micelle formulation with pharmaceutical excipients that facilitate solubilization and modulate P-glycoprotein (P-gp) was developed and evaluated in vitro and in vivo rats. Morin-loaded mixed micelle formulation with a morin-PluronicF127-Tween80 ratio of 1 : 10 : 0.02 (w/w/w) was prepared by a thin-film hydration method. The solubility, size distribution, drug encapsulation efficiency, and percent drug loading of the formulation were characterized. Subsequently, in vivo pharmacokinetic parameters of morin loaded in a PluronicF127 and Tween80 mixed-micelle formulation were investigated in rats. Absolute bioavailability of morin was dramatically increased by the oral administration of morin-loaded PluronicF127 and Tween80 mixed micelle from 0.4% to 11.2% without changing the systemic clearance and half-life. In Caco-2 cells, absorption permeability of morin from the novel formulation was increased 3.6-fold compared with that of morin alone. P-gp inhibition by cyclosporine A (CsA) increased absorptive permeability of morin 2.4-fold but decreased the efflux of morin by 52%, which was consistent with increased plasma concentration of morin in the pretreatment of CsA in rats. The morin formulation inhibited P-gp transport activity by 83.1% at 100 µM as morin concentration. Moreover, morin formulation increased paracellular permeability of Lucifer yellow by 1.6-1.8 fold. In conclusion, enhanced oral bioavailability of morin from morin-loaded PluronicF127 and Tween80 mixed micelle formulation can be attributed to increased intestinal permeation of morin, which was mediated at least by P-gp inhibition and enhanced paracellular route.
We aimed to develop a berberine formulation to enhance the intestinal absorption and plasma concentrations of berberine through the inhibition of P-glycoprotein (P-gp)-mediated efflux and the intestinal metabolism of berberine in rats. We used pluronic P85 (P85) and tween 80, which have the potential to inhibit P-gp and cytochrome P450s (i.e., CYP1A2, 2C9, 2C19, 2D6, and 3A4). A berberine-loaded mixed micelle formulation with ratios of berberine: P85: tween 80 of 1:5:0.5 (w/w/w) was developed. This berberine mixed micelle formulation had a mean size of 12 nm and increased the cellular accumulation of digoxin via P-gp inhibition. It also inhibited berberine metabolism in rat intestinal microsomes, without significant cytotoxicity, up to a berberine concentration of 100 μM. Next, we compared the pharmacokinetics of berberine and its major metabolites in rat plasma following the oral administration of the berberine formulation (50 mg/kg) in rats with the oral administration of berberine alone (50 mg/kg). The plasma exposure of berberine was significantly greater in rats administered the berberine formulation compared to rats administered only berberine, which could be attributed to the increased berberine absorption by inhibiting the P-gp-mediated berberine efflux and intestinal berberine metabolism by berberine formulation. In conclusion, we successfully prepared berberine mixed micelle formulation using P85 and tween 80 that has inhibitory potential for P-gp and CYPs (CYP2C19, 2D6, and 3A4) and increased the berberine plasma exposure. Therefore, a mixed micelle formulation strategy with P85 and tween 80 for drugs with high intestinal first-pass effects could be applied to increase the oral absorption and plasma concentrations of the drugs.
Berberine, the main active component of the herbal medicine Rhizoma Coptidis, has been reported to have hypoglycemic and insulin-sensitizing effects and, therefore, could be combined with metformin therapy. Thus, we assessed the potential drug-drug interactions between berberine and metformin. We investigated the in vitro inhibitory potency of berberine on metformin uptake in HEK293 cells overexpressing organic cation transporter (OCT) 1 and 2. To investigate whether this inhibitory effect of berberine on OCT1 and OCT2 could change the pharmacokinetics of metformin in vivo, we measured the effect of berberine co-administration on the pharmacokinetics of metformin at a single intravenous dose of 2 mg/kg metformin and 10 mg/kg berberine. In HEK293 cells, berberine inhibited OCT1- and OCT2-mediated metformin uptake in a concentration dependent manner and IC50 values for OCT1 and OCT2 were 7.28 and 11.3 μM, respectively. Co-administration of berberine increased the initial plasma concentration and AUC of metformin and decreased systemic clearance and volume of distribution of metformin in rats, suggesting that berberine inhibited disposition of metformin, which is governed by OCT1 and OCT2. Berberine inhibited the transport activity of OCT1 and OCT2 and showed significant potential drug-drug interactions with metformin in in vivo rats.
We aimed to investigate the effects of red ginseng extract (RGE) on the expression of efflux transporters and to study the pharmacokinetics of representative substrate. For this, rats received single or repeated administration of RGE (1.5 g/kg/day) for 1 and 2 weeks via oral gavage. mRNA and protein levels of multidrug resistance-associated protein2 (Mrp2), bile salt export pump (Bsep), and P-glycoprotein (P-gp) in the rat liver were measured via real-time polymerase chain reaction and Western blot analysis. Ginsenosides concentrations from the rat plasma were also monitored using a liquid chromatography–tandem mass spectrometry (LC–MS/MS) system. Plasma concentrations of ginsenoside Rb1, Rb2, Rc, and Rd following repeated administration of RGE for 1 and 2 weeks were comparable but significantly higher than those after single administration of RGE. These dosing regimens did not induce significant biochemical abnormalities in the liver, kidneys, and lipid homeostasis. In the RGE repeated oral administration groups, the mRNA and protein levels of Mrp2 significantly decreased. Accordingly, we investigated the changes in the pharmacokinetics of methotrexate, a probe substrate for Mrp2, following intravenous administration of 3 mg/kg methotrexate to rats in the RGE 1-week repeated oral administration group, compared to that in the control group. Biliary excretion, but not urinary excretion, of methotrexate decreased in the RGE repeated administration group, compared to that in the control group. Consequently, the plasma concentrations of methotrexate slightly increased in the RGE repeated administration group. In conclusion, repeated administration of RGE for 1 week resulted in a decrease in Mrp2 expression without inducing significant liver or kidney damage. Pharmacokinetic herb–drug interaction between RGE and methotrexate might occur owing to the decrease in the mRNA and protein levels of Mrp2.
APINACA (known as AKB48, N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide), an indazole carboxamide synthetic cannabinoid, has been used worldwide as a new psychoactive substance. Drug abusers take various drugs concomitantly, and therefore, it is necessary to characterize the potential of APINACA-induced drug–drug interactions due to the modulation of drug-metabolizing enzymes and transporters. In this study, the inhibitory effects of APINACA on eight major human cytochrome P450s (CYPs) and six uridine 5′-diphospho-glucuronosyltransferases (UGTs) in human liver microsomes, as well as on the transport activities of six solute carrier transporters and two efflux transporters in transporter-overexpressed cells, were investigated. APINACA exhibited time-dependent inhibition of CYP3A4-mediated midazolam 1′-hydroxylation (Ki, 4.5 µM; kinact, 0.04686 min−1) and noncompetitive inhibition of UGT1A9-mediated mycophenolic acid glucuronidation (Ki, 5.9 µM). APINACA did not significantly inhibit the CYPs 1A2, 2A6, 2B6, 2C8/9/19, or 2D6 or the UGTs 1A1, 1A3, 1A4, 1A6, or 2B7 at concentrations up to 100 µM. APINACA did not significantly inhibit the transport activities of organic anion transporter (OAT)1, OAT3, organic anion transporting polypeptide (OATP)1B1, OATP1B3, organic cation transporter (OCT)1, OCT2, P-glycoprotein, or breast cancer resistance protein at concentrations up to 250 μM. These data suggest that APINACA can cause drug interactions in the clinic via the inhibition of CYP3A4 or UGT1A9 activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.