Team semantics is a semantical framework for the study of dependence and independence concepts ubiquitous in many areas such as databases and statistics. In recent works team semantics has been generalised to accommodate also multisets and probabilistic dependencies. In this article we study a variant of probabilistic team semantics and relate this framework to a Tarskian two-sorted logic. We also show that very simple quantifier-free formulae of our logic give rise to NP-hard model checking problems.
Independence logic, introduced in [8], cannot be effectively axiomatized. However, first-order consequences of independence logic sentences can be axiomatized. In this article we give an explicit axiomatization and prove that it is complete in this sense. The proof is a generalization of the similar result for dependence logic introduced in [15].
We define a variant of team semantics called multiteam semantics based on multisets and study the properties of various logics in this framework. In particular, we define natural probabilistic versions of inclusion and independence atoms and certain approximation operators motivated by approximate dependence atoms of Väänänen.
We study probabilistic team semantics which is a semantical framework allowing the study of logical and probabilistic dependencies simultaneously. We examine and classify the expressive power of logical formalisms arising by different probabilistic atoms such as conditional independence and different variants of marginal distribution equivalences. We also relate the framework to the first-order theory of the reals and apply our methods to the open question on the complexity of the implication problem of conditional independence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.