We study the empirical realisation of the memory effect in Yang-Mills theory, especially in view of the classical vs. quantum nature of the theory. Gauge invariant analysis of memory in classical U(1) electrodynamics and its observation by total change of transverse momentum of a charge is reviewed. Gauge fixing leads to a determination of a gauge transformation at infinity. An example of Yang-Mills memory then is obtained by reinterpreting known results on interactions of a quark and a large high energy nucleus in the theory of Color Glass Condensate. The memory signal is again a kick in transverse momentum, but it is only obtained in quantum theory after fixing the gauge, after summing over an ensemble of classical processes.
We study gravitational wave memory effect in the Friedmann-Robertson-Walker cosmological model with matter and a cosmological constant. Since the background is curved, gravitational radiation develops a tail part arriving after the main signal that travels along the past light cone of the observer. First we discuss first order gravitational wave sourced by a binary system, and we find that the tail only gives a negligible memory, in accord with previous results. Then we study the nonlinear memory effect coming from induced gravitational radiation sourced by first order gravitational radiation propagating over cosmological distances. In the light cone part of the induced gravitational wave we find a novel term missed in previous studies of the cosmological memory effect. Furthermore, we show that the induced gravitational wave has a tail part that slowly accumulates after the light cone part has passed and grows to a sizeable magnitude over a cosmological timescale. This tail part of the memory effect will be a new component in the stochastic gravitational wave background.
We study gravitational wave memory effect in the FRW cosmological model with matter and cosmological constant. Since the background is curved, gravitational radiation develops a tail part arriving after the main signal that travels along the past light cone of the observer. First we discuss first order gravitational wave sourced by a binary system, and find that the tail only gives a negligible memory, in accord with previous results. Then we study the nonlinear memory effect coming from induced gravitational radiation sourced by first order gravitational radiation propagating over cosmological distances. In the light cone part of the induced gravitational wave we find a novel term missed in previous studies of the cosmological memory effect. Furthermore, we show that the induced gravitational wave has a tail part that slowly accumulates after the light cone part has passed and grows to a sizeable magnitude over a cosmological timescale. This tail part of the memory effect will be a new component in the stochastic gravitational wave background.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.