Zinc selenide (ZnSe) thin films were deposited on to chemically and ultrasonically cleaned glass substrates at different substrate temperatures from room temperature to 200°C keeping the thickness fixed at 300 nm by using thermal evaporation method in vacuum. The structural properties of the films were ascertained by X-ray diffraction (XRD) method utilizing a diffractometer. The optical properties were measured in the photon wavelength ranging between 300 and 2500 nm by using a UV-VIS-NIR spectrophotometer. The XRD patterns reveal that the films were polycrystalline in nature exhibiting f.c.c zincblende structure with average lattice parameter, a = 5.6873Å. The grain size, strain and dislocation densities of the films have bee calculated. The optical transmittance and reflectance were utilized to compute the absorption coefficient, band gap energy and refractive index of the films. The band gap energy of the films was extracted from the absorption spectra. The direct band gap energy of the films slightly increases with substrate temperature.DOI: http://dx.doi.org/10.3329/jbas.v36i2.12969Journal of Bangladesh Academy of Sciences, Vol. 36, No. 2, 233-240, 2012
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.