Controlling magnetic states by a small current is essential for the next-generation of energy-efficient spintronic devices. However, it invariably requires considerable energy to change a magnetic ground state of intrinsically quantum nature governed by fundamental Hamiltonian, Received: ((will be filled in by the editorial staff))Revised: ((will be filled in by the editorial staff))
Spin current generation through the spin-orbit interaction in non-magnetic materials lies at the heart of spintronics. When the generated spin current is injected to a ferromagnet, it produces spin-orbit torque and manipulates magnetization efficiently. Optically generated spin currents are expected to be superior to their electrical counterparts in terms of the manipulation speed. Here we report optical spin-orbit torques in heavy metal/ferromagnet heterostructures. The strong spin-orbit coupling of heavy metals induces photo-excited carriers to be spin-polarized, and their transport from heavy metals to ferromagnets induces a torque on magnetization. Our results demonstrate that heavy metals can generate spin-orbit torque not only electrically but also optically.
A spin current through a ferromagnet/heavy-metal interface may shrink due to the spin-flip at the interface, resulting in the spin-memory loss. Here we propose a mechanism of the spin-memory loss. In contrast to other mechanisms based on interfacial spin-orbit coupling, our mechanism is based on the bulk spin-orbit coupling in a heavy-metal. We demonstrate that the bulk spin-orbit coupling induces the entanglement between the spin and orbital degrees of freedom and this spin-orbital entanglement can give rise to sizable spin-flip at the interface even when the interfacial spin-orbit coupling is weak. Our mechanism emphasizes crucial roles of the atomic orbital degree of freedom and induces the strong spin-memory loss near band crossing points between bands of different orbital characters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.