The FLUXNET2015 dataset provides ecosystem-scale data on CO 2 , water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.
The energy balance at most surface-atmosphere flux research sites remains unclosed. The mechanisms underlying the discrepancy between measured energy inputs and outputs across the global FLUXNET tower network are still under debate. Recent reviews have identified exchange processes and turbulent motions at large spatial and temporal scales in heterogeneous landscapes as the primary cause of the lack of energy balance closure at some intensively-researched sites, while unmeasured storage terms cannot be ruled out as a dominant contributor to the lack of energy balance closure at many other sites. We analyzed energy balance closure across 173 ecosystems in the FLUXNET database and explored the relationship between energy balance closure and landscape heterogeneity using MODIS products and GLOBEstat elevation data. Energy balance closure per research site (CEB,s) averaged 0.84 ± 0.20, with best average closures in evergreen broadleaf forests and savannas (0.91–0.94) and worst average closures in crops, deciduous broadleaf forests, mixed forests and wetlands (0.70–0.78). Half-hourly or hourly energy balance closure on a percent basis increased with friction velocity (u*) and was highest on average under near-neutral atmospheric conditions. CEB,s was significantly related to mean precipitation, gross primary productivity and landscape-level enhanced vegetation index (EVI) from MODIS, and the variability in elevation, MODIS plant functional type, and MODIS EVI. A linear model including landscape-level variability in both EVI and elevation, mean precipitation, and an interaction term between EVI variability and precipitation had the lowest Akaike’s information criterion value. CEB,s in landscapes with uniform plant functional type approached 0.9 and CEB,s in landscapes with uniform EVI approached 1. These results suggest that landscape-level heterogeneity in vegetation and topography cannot be ignored as a contributor to incomplete energy balance closure at the flux network level, although net radiation measurements, biological energy assimilation, unmeasured storage terms, and the importance of good practice including site selection when making flux measurements should not be discounted. Our results suggest that future research should focus on the quantitative mechanistic relationships between energy balance closure and landscape-scale heterogeneity, and the consequences of mesoscale circulations for surface-atmosphere exchange measurements
[1] The first continuous multi-year measurements of the CO 2 exchange between a subarctic fen and the atmosphere were conducted at Kaamanen in northern Finland (69°N). According to our six-year data-set, the fen is presently a sink of atmospheric CO 2 with a mean rate of À22 g C m À2 yr À1 . The interannual variation of the CO 2 balances originates almost completely from the variations during the snow-free period, but the efflux in the wintertime constitutes a significant part of the annual balance. The snow melt timing is the most important single determinant of the annual carbon balance. In contrast to a commonlyheld view, the hydrometeorological conditions during the growing season had only a minor effect on the annual balance, emphasizing the importance of year-round measurements. This study indicates that climate warming may increase the length of the growing season and thus benefit rather than threaten the carbon pool of subarctic peatlands.
Many wetland ecosystems such as peatlands and wet tundra hold large amounts of organic carbon (C) in their soils, and are thus important in the terrestrial C cycle. We have synthesized data on the carbon dioxide (CO 2 ) exchange obtained from eddy covariance measurements from 12 wetland sites, covering 1-7 years at each site, across Europe and North America, ranging from ombrotrophic and minerotrophic peatlands to wet tundra ecosystems, spanning temperate to arctic climate zones. The average summertime net ecosystem exchange of CO 2 (NEE) was highly variable between sites. However, all sites with complete annual datasets, seven in total, acted as annual net sinks for atmospheric CO 2 . To evaluate the influence of gross primary production (GPP) and ecosystem respiration (R eco ) on NEE, we first removed the artificial correlation emanating from the method of partitioning NEE into GPP and R eco . After this correction neither R eco (P 5 0.162) nor GPP (P 5 0.110) correlated significantly with NEE on an annual basis. Spatial variation in annual and summertime R eco was associated with growing season period, air temperature, growing degree days, normalized difference vegetation index and vapour pressure deficit. GPP showed weaker correlations with environmental variables as compared with R eco , the exception being leaf area index (LAI), which correlated with both GPP and NEE, but not with R eco . Length of growing season period was found to be the most important variable describing the spatial variation in summertime GPP and R eco ; global warming will thus cause these components to increase. Annual GPP and NEE correlated significantly with LAI and pH, thus, in order to predict wetland C exchange, differences in ecosystem structure such as leaf area and biomass as well as nutritional status must be taken into account.
A B S T R A C TThe northern wetlands are one of the major sources of methane into the atmosphere. We measured annual methane emission from a boreal minerotrophic fen, Siikaneva, by the eddy covariance method. The average wintertime emissions were below 1 mg m −2 h −1 , and the summertime emissions about 3.5 mg m −2 h −1 . The water table depth did have any clear effect on methane emissions. During most of the year the emission depended on the temperature of peat below the water table. However, during the high and late summer the emission was independent on peat temperature as well. No diurnal cycle of methane flux was found. The total annual emission from the Siikaneva site was 12.6 g m −2 . The emissions of the snow free period contributed 91% to the annual emission. The emission pulse during the snow melting period was clearly detectable but of minor importance adding only less than 3% to the annual emission. Over 20% of the carbon assimilated during the year as carbon dioxide was emitted as methane. Thus methane emission is an important component of the carbon balance of the Siikaneva fen. This indicates need of taking methane into account when studying carbon balances of northern fen ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.