Uncoupling protein 1 (UCP1) diverts energy from ATP synthesis to thermogenesis in the mitochondria of brown adipose tissue by catalysing a regulated leak of protons across the inner membrane. The functions of its homologues, UCP2 and UCP3, in other tissues are debated. UCP2 and UCP3 are present at much lower abundance than UCP1, and the uncoupling with which they are associated is not significantly thermogenic. Mild uncoupling would, however, decrease the mitochondrial production of reactive oxygen species, which are important mediators of oxidative damage. Here we show that superoxide increases mitochondrial proton conductance through effects on UCP1, UCP2 and UCP3. Superoxide-induced uncoupling requires fatty acids and is inhibited by purine nucleotides. It correlates with the tissue expression of UCPs, appears in mitochondria from yeast expressing UCP1, and is absent in skeletal muscle mitochondria from UCP3 knockout mice. Our findings indicate that the interaction of superoxide with UCPs may be a mechanism for decreasing the concentrations of reactive oxygen species inside mitochondria.
Oxidative stress and mitochondrial dysfunction are associated with disease and aging. Oxidative stress results from overproduction of reactive oxygen species (ROS), often leading to peroxidation of membrane phospholipids and production of reactive aldehydes, particularly 4-hydroxy-2-nonenal. Mild uncoupling of oxidative phosphorylation protects by decreasing mitochondrial ROS production. We find that hydroxynonenal and structurally related compounds (such as trans-retinoic acid, trans-retinal and other 2-alkenals) specifically induce uncoupling of mitochondria through the uncoupling proteins UCP1, UCP2 and UCP3 and the adenine nucleotide translocase (ANT). Hydroxynonenal-induced uncoupling was inhibited by potent inhibitors of ANT (carboxyatractylate and bongkrekate) and UCP (GDP). The GDP-sensitive proton conductance induced by hydroxynonenal correlated with tissue expression of UCPs, appeared in yeast mitochondria expressing UCP1 and was absent in skeletal muscle mitochondria from UCP3 knockout mice. The carboxyatractylate-sensitive hydroxynonenal stimulation correlated with ANT content in mitochondria from Drosophila melanogaster expressing different amounts of ANT. Our findings indicate that hydroxynonenal is not merely toxic, but may be a biological signal to induce uncoupling through UCPs and ANT and thus decrease mitochondrial ROS production.
The ability of native uncoupling protein-3 (UCP3) to uncouple mitochondrial oxidative phosphorylation is controversial. We measured the expression level of UCP3 and the proton conductance of skeletal muscle mitochondria isolated from transgenic mice overexpressing human UCP3 (UCP3-tg) and from UCP3 knockout (UCP3-KO) mice. The concentration of UCP3 in UCP3-tg mitochondria was ϳ3 g/mg protein, ϳ20-fold higher than the wild type value. UCP3-tg mitochondria had increased nonphosphorylating respiration rates, decreased respiratory control, and ϳ4-fold increased proton conductance compared with the wild type. However, this increased uncoupling in UCP3-tg mitochondria was not caused by native function of UCP3 because it was not proportional to the increase in UCP3 concentration and was neither activated by superoxide nor inhibited by GDP. UCP3 was undetectable in mitochondria from UCP3-KO mice. Nevertheless, UCP3-KO mitochondria had unchanged respiration rates, respiratory control ratios, and proton conductance compared with the wild type under a variety of assay conditions. We conclude that uncoupling in UCP3-tg mice is an artifact of transgenic expression, and that UCP3 does not catalyze the basal proton conductance of skeletal muscle mitochondria in the absence of activators such as superoxide.
Mitochondria play a central role in neuronal death during pathological exposure to glutamate (excitotoxicity). To investigate the detailed bioenergetics of the in situ mitochondria, a method is described to monitor continuously the respiration of primary cerebellar granule neuron cultures while simultaneously imaging cytoplasmic Ca 2؉ and mitochondrial membrane potential. Coverslip-attached cells were perfused in an imaging chamber with upstream and downstream flow-through oxygen electrodes. The bioenergetic consequences of chronic glutamate exposure were investigated, including ATP supply and demand, proton leak, and mitochondrial respiratory capacity during chronic glutamate exposure. In 25 mM K ؉ medium supplemented with 10% dialyzed serum, cells utilized 54% of their respiratory capacity in the absence of receptor activation (37% for ATP generation, 12% to drive the mitochondrial proton leak, and the residual 5% was nonmitochondrial). Glutamate initially increased mitochondrial respiration from 51 to 68% of capacity, followed by a slow decline. It was estimated that 85% of this increased respiration was because of increased ATP demand, whereas 15% was attributable to a transient mitochondrial proton leak. N-Methyl-D-aspartate receptor activation was only responsible for 62% of the increased respiration. When adjusted for cell death over 3 h of glutamate exposure, respiration of the viable cells remained near basal and protonophore stimulated respiration to the same extent as control cells. Pyruvate-supplemented media protected cells from glutamate excitotoxicity, although this was associated with mitochondrial dysfunction. We conclude that excitotoxicity under these conditions is not because of an ATP deficit or uncoupling. Furthermore, mitochondria maintain the same respiratory capacity as in control cells.Although glutamate is the dominant excitatory neurotransmitter in the central nervous system, excessive glutamate exposure can cause neuronal cell death by a process known as glutamate excitotoxicity (1, 2). This phenomenon amplifies brain damage following stroke, traumatic brain injury, and epilepsy where massive glutamate release from neurons in the affected region causes pathological activation of N-methyl-Daspartate (NMDA) 1 -selective glutamate receptors and contributes to neuronal cell death in the surrounding tissue (3). In primary neuronal culture models, necrosis is not instantaneous but rather occurs after a latent period followed by an uncontrolled rise in cytoplasmic free Ca 2ϩ , ([Ca 2ϩ ] c ), known as delayed Ca 2ϩ deregulation (DCD) (4, 5).A central role for mitochondria in cerebellar granule neuron (CGN) excitotoxicity is firmly established, based on fluorescent monitoring of changes in mitochondrial membrane potential (⌬ m ) (6 -8), mitochondrial Ca 2ϩ accumulation (9, 10) and morphology (11), and on the protection afforded by mitochondrial depolarization prior to glutamate under conditions where glycolysis is adequate (12-14). However, there is very limited information on in situ mitoch...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.