The COVID-19 pandemic has imposed a global emergency and also has raised issues with waste management practices. This study emphasized the challenges of increased waste disposal during the COVID-19 crisis and its response practices. Data obtained from the scientific research papers, publications from the governments and multilateral organizations, and media reports were used to quantify the effect of the pandemic towards waste generation. A huge increase in the amount of used personal protective equipments (facemasks, gloves, and other protective stuffs) and wide distribution of infectious wastes from hospitals, health care facilities, and quarantined households was found. The amount of food and plastic waste also increased during the pandemic. These factors caused waste treatment facilities to be overwhelmed, forcing emergency treatment and disposals (e.g., co-disposal in a municipal solid waste incinerator, cement kilns, industrial furnaces, and deep burial) to ramp up processing capacity. This paper discussed the ways the operation of those facilities must be improved to cope with the challenge of handling medical waste, as well as working around the restrictions imposed due to COVID-19. The study also highlights the need for short, mid, and longer-term responses towards waste management during the pandemic. Furthermore, the practices discussed in this paper may provide an option for alternative approaches and development of sustainable strategies for mitigating similar pandemics in the future.
This study focused on identifying various system boundaries and evaluating methods of estimating energy performance of biogas production. First, the output-input ratio method used for evaluating energy performance from the system boundaries was reviewed. Secondly, ways to assess the efficiency of biogas use and parasitic energy demand were investigated. Thirdly, an approach for comparing biogas production to other energy production methods was evaluated. Data from an existing biogas plant, located in Finland, was used for the evaluation of the methods. The results indicate that calculating and comparing the output-input ratios (Rpr1, Rpr2, Rut, Rpl and Rsy) can be used in evaluating the performance of biogas production system. In addition, the parasitic energy demand calculations (w) and the efficiency of utilizing produced biogas (η) provide detailed information on energy performance of the biogas plant. Furthermore, Rf and energy output in relation to total solid mass of feedstock (FO/TS) are useful in comparing biogas production with other energy recovery technologies. As a conclusion it is essential for the comparability of biogas plants that their energy performance would be calculated in a more consistent manner in the future.
All life forms require phosphorus (P), which has no substitute in food production. The risk of phosphorus loss from soil and limited P rock reserves has led to the development of recycling P from industrial residues. This study investigates the potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment (ASH DEC) in Finland. An ASH DEC plant could receive 46-76 kt/a of sewage sludge ash to produce 51-85 kt/a of a P-rich product with a P2O5 content of 13-18%, while 320-750 kt/a of manure ash could be supplied to produce 350-830 kt/a of a P-rich product with a P content of 4-5%. The P2O5 potential in the total P-rich product from the ASH DEC process using sewage sludge and manure ash is estimated to be 25-47 kt/a, which is significantly more than the P fertilizer demand in Finland's agricultural industries. The energy efficiency of integrated incineration and the ASH DEC process is more dependent on the total solid content and the subsequent need for mechanical dewatering and thermal drying than on the energy required by the ASH DEC process. According to the results of this study, the treated sewage sludge and manure ash using the ASH DEC process represent significant potential phosphorus sources for P fertilizer production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.