Blue rubber bleb nevus syndrome (Bean syndrome) is a rare, severe disorder of unknown cause, characterized by numerous cutaneous and internal venous malformations; gastrointestinal lesions are pathognomonic. We discovered somatic mutations in TEK, the gene encoding TIE2, in 15 of 17 individuals with blue rubber bleb nevus syndrome. Somatic mutations were also identified in five of six individuals with sporadically occurring multifocal venous malformations. In contrast to common unifocal venous malformation, which is most often caused by the somatic L914F TIE2 mutation, multifocal forms are predominantly caused by double (cis) mutations, that is, two somatic mutations on the same allele of the gene. Mutations are identical in all lesions from a given individual. T1105N-T1106P is recurrent in blue rubber bleb nevus, whereas Y897C-R915C is recurrent in sporadically occurring multifocal venous malformation: both cause ligand-independent activation of TIE2, and increase survival, invasion, and colony formation when expressed in human umbilical vein endothelial cells.
The microscopic image of a specimen in the absence of staining appears colorless and textureless. Therefore, microscopic inspection of tissue requires chemical staining to create contrast. Hematoxylin and eosin (H&E) is the most widely used chemical staining technique in histopathology. However, such staining creates obstacles for automated image analysis systems. Due to different chemical formulations, different scanners, section thickness, and lab protocols, similar tissues can greatly differ in appearance. This huge variability is one of the main challenges in designing robust and resilient automated image analysis systems. Moreover, staining process is time consuming and its chemical effects deform structures of specimens. In this work, we develop a method to virtually stain unstained specimens. Our method utilizes dimension reduction and conditional adversarial generative networks (cGANs) which build highly non-linear mappings between input and output images. Conditional GANs ability to handle very complex functions and high dimensional data enables transforming unstained hyperspectral tissue image to their H&E equivalent which comprises highly diversified appearance. In the long term, such virtual digital H&E staining could automate some of the tasks in the diagnostic pathology workflow which could be used to speed up the sample processing time, reduce costs, prevent adverse effects of chemical stains on tissue specimens, reduce observer variability, and increase objectivity in disease diagnosis.
A novel multi-organ disease that is fatal in early childhood was identified in three patients from two non-consanguineous families. These children were born asymptomatic but at the age of 2 months they manifested progressive multi-organ symptoms resembling no previously known disease. The main clinical features included progressive cerebropulmonary symptoms, malabsorption, progressive growth failure, recurrent infections, chronic haemolytic anaemia and transient liver dysfunction. In the affected children, neuropathology revealed increased angiomatosis-like leptomeningeal, cortical and superficial white matter vascularisation and congestion, vacuolar degeneration and myelin loss in white matter, as well as neuronal degeneration. Interstitial fibrosis and previously undescribed granuloma-like lesions were observed in the lungs. Hepatomegaly, steatosis and collagen accumulation were detected in the liver. A whole-exome sequencing of the two unrelated families with the affected children revealed the transmission of two heterozygous variants in the NHL repeat-containing protein 2 (NHLRC2); an amino acid substitution p.Asp148Tyr and a frameshift 2-bp deletion p.Arg201GlyfsTer6. NHLRC2 is highly conserved and expressed in multiple organs and its function is unknown. It contains a thioredoxin-like domain; however, an insulin turbidity assay on human recombinant NHLRC2 showed no thioredoxin activity. In patient-derived fibroblasts, NHLRC2 levels were low, and only p.Asp148Tyr was expressed. Therefore, the allele with the frameshift deletion is likely non-functional. Development of the Nhlrc2 null mouse strain stalled before the morula stage. Morpholino knockdown of nhlrc2 in zebrafish embryos affected the integrity of cells in the midbrain region. This is the first description of a fatal, early-onset disease; we have named it FINCA disease based on the combination of pathological features that include fibrosis, neurodegeneration, and cerebral angiomatosis.
Endothelial integrity is vital for homeostasis and adjusted to tissue demands. Although fluid uptake by lymphatic capillaries is a critical attribute of the lymphatic vasculature, the barrier function of collecting lymphatic vessels is also important by ensuring efficient fluid drainage as well as lymph node delivery of antigens and immune cells. Here, we identified the transmembrane ligand EphrinB2 and its receptor EphB4 as critical homeostatic regulators of collecting lymphatic vessel integrity. Conditional gene deletion in mice revealed that EphrinB2/EphB4 signalling is dispensable for blood endothelial barrier function, but required for stabilization of lymphatic endothelial cell (LEC) junctions in different organs of juvenile and adult mice. Studies in primary human LECs further showed that basal EphrinB2/EphB4 signalling controls junctional localisation of the tight junction protein CLDN5 and junction stability via Rac1/Rho-mediated regulation of cytoskeletal contractility. EphrinB2/EphB4 signalling therefore provides a potential therapeutic target to selectively modulate lymphatic vessel permeability and function.
TLR9 is a cellular DNA-receptor, which is widely expressed in breast and other cancers. Although synthetic TLR9-ligands induce cancer cell invasion in vitro, the role of TLR9 in cancer pathophysiology has remained unclear. We show here that living cancer cells uptake DNA from chemotherapy-killed cancer cells. We discovered that such DNA induces TLR9- and cathepsin-mediated invasion in living cancer cells. To study whether this phenomenon contributes to treatment responses, triple negative, human MDA-MB-231 breast cancer cells stably expressing control or TLR9 siRNA were inoculated orthotopically into nude mice. The mice were treated with vehicle or doxorubicin. The tumor groups exhibited equal decreases in size in response to doxorubicin. However, while the weights of vehicle-treated mice were similar, mice bearing control siRNA tumors became significantly more cachectic in response to doxorubicin, as compared with similarly treated mice bearing TLR9 siRNA tumors, suggesting a TLR9-mediated inflammation at the site of the tumor. In conclusion, our findings propose that DNA released from chemotherapy-killed cancer cells has significant influence on TLR9-mediated biological effects in living cancer cells. Through these mechanisms, tumor TLR9 expression may affect treatment responses to chemotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.