Chemical and enzymatic depolymerizations of suberin isolated from potato peel (Solanum tuberosum var. Nikola) were performed under various conditions. Enzymatic hydrolysis with cutinase CcCut1 and chemical methanolysis with NaOMe of suberin yielded monomeric fragments, which were identified as TMS derivatives with GC-MS and GC-FID. The solid, hydrolysis-resistant residues were analyzed with solid state 13 C CPMAS NMR, FT-IR, and microscopic methods. Methanolysis released more CHCl 3 -soluble material than the cutinase treatment when determined gravimetrically. Interestingly, cutinase-catalyzed hydrolysis produced higher proportions of aliphatic monomers than hydrolysis with the NaOMe procedure when analyzed by GC in the form of TMS derivatives. Monomers released by the two methods were mainly R,ω-dioic acids and ω-hydroxy acids, but the ratios of the detected monomers were different, at 40.0 and 32.7% for methanolysis and 64.6 and 8.2% for cutinase, respectively. Thus, cutinase CcCut1 showed higher activity toward ester bonds of R,ω-dioic acids than toward the bonds of ω-hydroxy acids. The most abundant monomeric compounds were octadec-9-ene-1,18-dioic acid and 18-hydroxyoctadec-9-enoic acid, which accounted for ca. 37 and 28% of all monomers, respectively. The results of the analyses of the chemical and enzymatic hydrolysis products were supported by the spectroscopic analyses with FT-IR and CPMAS 13 C NMR together with the analysis of the microstructures of the hydrolysis residues by light and confocal microscopy.
This study examined the concentrations of umami compounds in pork loins cooked at 3 different temperatures and 3 different lengths of cooking times. The pork loins were cooked with the sous vide technique. The free amino acids (FAAs), glutamic acid and aspartic acid; the 5'-nucleotides, inosine-5'-monophosphate (IMP) and adenosine-5'-monophosphate (AMP); and corresponding nucleoside inosine of the cooked meat and its released juice were determined by high-performance liquid chromatography. Under the experimental conditions used, the cooking temperature played a more important role than the cooking time in the concentration of the analyzed compounds. The amino acid concentrations in the meat did not remain constant under these experimental conditions. The most notable effect observed was that of the cooking temperature and the higher amino acid concentrations in the released juice of meat cooked at 80 °C compared with 60 and 70 °C. This is most likely due to the heat induced hydrolysis of proteins and peptides releasing water soluble FAAs from the meat into the cooking juice. In this experiment, the cooking time and temperature had no influence on the IMP concentrations observed. However, the AMP concentrations increased with the increasing temperature and time. This suggests that the choice of time and temperature in sous vide cooking affects the nucleotide concentration of pork meat. The Sous vide technique proved to be a good technique to preserve the cooking juice and the results presented here show that cooking juice is rich in umami compounds, which can be used to provide a savory or brothy taste.
Hydroxysteroid (17beta) dehydrogenases (HSD17Bs) have a significant role in steroid metabolism by catalyzing the conversion between 17-keto and 17beta-hydroxysteroids. However, several studies in vitro have shown that some of these enzymes may also be involved in other metabolic pathways. Among these enzymes, HSD17B12 has been shown to be involved in both the biosynthesis of estradiol and the elongation of the essential very long fatty acids in vitro and in vivo. To investigate the function of mammalian HSD17B12 in vivo, we generated mice with a null mutation of the Hsd17b12 gene (HSD17B12KO mice) by using a gene-trap vector, resulting in the expression of the lacZ gene of the trapped allele. The beta-galactosidase staining of the heterozygous HSD17B12KO mice revealed that Hsd17b12 is expressed widely in the embryonic day (E) 7.5-E9.5 embryos, with the highest expression in the neural tissue. The HSD17B12KO mice die at E9.5 at latest and present severe developmental defects. Analysis of the knockout embryos revealed that the embryos initiate gastrulation, but organogenesis is severely disrupted. As a result, the E8.5-E9.5 embryos were void of all normal morphological structures. In addition, the inner cell mass of knockout blastocysts showed decreased proliferation capacity in vitro, and the amount of arachidonic acid was significantly decreased in heterozygous HSD17B12 ES cells. This, together with the expression pattern, suggests that in mouse, the HSD17B12 is involved in the synthesis of arachidonic acid and is essential for normal neuronal development during embryogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.