BackgroundAdipose-derived stem cells (ASCs) are a robust, multipotent cell source. They are easily obtained and hold promise in many regenerative applications. It is generally considered that the function of somatic stem cells declines with age. Although several studies have examined the effects of donor age on proliferation potential and pluripotency of ASCs, the results of these studies were not consistent.ObjectiveThis study tested whether the donor age affects the yield of ASCs from adipose tissue, as well as the proliferation and differentiation potentials of ASCs.MethodsThis study used ASCs obtained from adipose tissues of 260 donors (ages 5–97 years). ASCs were examined for individual differences in proliferation, and adipogenic, osteogenic and chondrogenic differentiation potentials in vitro. Characteristics of ASCs from each donor were evaluated by the principal component analysis (PCA) using their potential parameters.ResultsAnalyses on ASCs demonstrated that adipogenic potentials declined with age, but proliferation, osteogenic and chondrogenic potentials were not correlated with age. Interestingly, in all ASC potentials, including adipogenesis, individual differences were observed. Principal component analysis (PCA) revealed that individual differences became evident in the elderly, and those variations were more prominent in females than in males.ConclusionsThis study demonstrated age-related changes in the potentials of ASCs and revealed that the individual differences of ASCs become significant in people over 60 years of age (for females over 60, and for males over 80). We believe that it is important to carefully observe ASC potentials in order to achieve effective regenerative medicine treatments using ASCs.
The constitution and skin type of individuals are influenced by various factors. Recently, the influence of genetic predispositions on these has been emphasized. To date, genome‐wide association studies (GWAS) have shown several single nucleotide polymorphisms (SNPs) that affect individual's constitution and skin type. However, these studies have mainly focused on the Caucasian population, and only a few association analyses with the constitution and skin type of individuals involving a Japanese population have been conducted. In this study, we conducted a GWAS analysis of 9 phenotypes regarding the constitution or skin type of 1108 Japanese women based on a questionnaire. As a result, in addition to SNPs known to be involved in phenotypes in the past, we discovered new SNPs and genetic regions related to darkness of pigmented spots, skin flushing, frequency of rough skin and responsiveness to cosmetics.
Hair follicle stem cells (HFSC) are localized in the bulge region of the hair follicle and play a role in producing hair. Recently, it has been shown that the number of HFSC decreases with age, which is thought to be a cause of senile alopecia. Therefore, maintaining HFSC may be key for the prevention of age‐related hair loss, but the regulatory mechanisms of HFSC and the effects of aging on them are largely unknown. In general, stem cells are known to require regulatory factors in the pericellular microenvironment, termed the stem cell niche, to maintain their cell function. In this study, we focused on the extracellular matrix proteoglycan decorin (DCN) as a candidate factor for maintaining the human HFSC niche. Gene expression analysis showed that DCN was highly expressed in the bulge region. We observed decreases in DCN expression as well as the number of KRT15‐positive HFSC with age. In vitro experiments with human plucked hair‐derived HFSC revealed that HFSC lost their undifferentiated state with increasing passages, and prior to this change a decrease in DCN expression was observed. Furthermore, knockdown of DCN promoted HFSC differentiation. In contrast, when HFSC were cultured on DCN‐coated plates, they showed an even more undifferentiated state. From these results, as a novel mechanism for maintaining HFSC, it was suggested that DCN functions as a stem cell niche component, and that the deficit of HFSC maintenance caused by a reduction in DCN expression could be a cause of age‐related hair loss.
IntroductionAdipose-derived stromal/stem cells (ASCs) have attracted attention as a promising material for regenerative medicine. Previously, we reported an age-related decrease in the adipogenic potential of ASCs from human subjects and found that the individual difference in this potential increased with age, although the mechanisms remain unclear. Recently, other groups demonstrated that a secreted antagonist of bone morphogenetic protein (BMP) signaling, Gremlin 2 (GREM2), inhibits the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) into osteoblasts and the adipogenesis of 3T3-L1 cell. Here, we examined the effects of GREM2 on the differentiation of ASCs into adipocytes.MethodsTo examine changes in GREM2 expression levels with age, immunohistochemistry was performed on subcutaneous adipose tissues from subjects 12–97 years of age. Next, GREM2 gene expression levels in ASCs collected from subjects 5–90 years of age were examined by RT-PCR, and the change with age and correlation between the expression level and the adipogenic potential of ASCs were analyzed. In addition, to assess whether GREM2 affects adipogenesis, ASCs (purchased from a vendor) were cultured to induce adipogenesis with recombinant GREM2 protein, and siRNA-induced GREM2 knockdown experiment was also performed using aged ASCs.ResultsIn adipose tissues, GREM2 expression was observed in cells, including ASCs, but not in mature adipocytes, and the expression level per cell increased with age. GREM2 expression levels in ASCs cultured in vitro also increased with age, and the individual differences in the level increased with age. Of note, partial correlation analysis controlled for age revealed that the adipogenic potential of ASCs and the GREM2 gene expression level were negatively correlated. Furthermore, based on a GREM2 addition experiment, GREM2 has inhibitory effects on the adipogenesis of ASCs through activation of Wnt/β-catenin signaling. On the other hand, GREM2 knockdown in aged ASCs promoted adipogenesis.ConclusionsThe GREM2 expression level was confirmed to play a role in the age-related decrease in adipogenic potential observed in ASCs isolated from adipose tissues as well as in the enhancement of the individual difference, which increased with age. GREM2 in adipose tissues increased with age, which suggested that GREM2 functions as an inhibitory factor of adipogenesis in ASCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.