A new class of magnetoelastic gel that demonstrates drastic and reversible changes in storage modulus without using strong magnetic fields was obtained. The magnetic gel consists of carrageenan and carbonyl iron particles. The magnetic gel with a volume fraction of magnetic particles of 0.30 exhibited a reversible increase by a factor of 1400 of the storage modulus upon a magnetic field of 500 mT, which is the highest value in the past for magnetorheological soft materials. It is considered that the giant magnetoelastic behavior is caused by both high dispersibility and high mobility of magnetic particles in the carrageenan gel. The off-field storage modulus of the magnetic gel at volume fractions below 0.30 obeyed the Krieger-Dougherty equation, indicating random dispersion of magnetic particles. At 500 mT, the storage modulus was higher than 4.0 MPa, which is equal to that of magnetic fluids, indicating that the magnetic particles move and form a chain structure by magnetic fields. Morphological study revealed the evidence that the magnetic particles embedded in the gel were aligned in the direction of magnetic fields, accompanied by stretching of the gel network. We conclude that the giant magnetoelastic phenomenon originates from the chain structure consisting of magnetic particles similar to magnetic fluids.
A novel hydrogenation of carbon dioxide proceeds in the presence of a RU~(CO),~-KJ homogeneous catalytic system with successive formation of carbon monoxide, methanol and methane.
We have investigated the electric conductivity, dielectric relaxation behavior, and viscosity for the aqueous solution of cyanobacterial megamolecules, molecular weight =1.6×10(7) g/mol, named sacran. Sacran is an anionic polyelectrolyte which has carboxylate and sulfate groups on the saccharide chain. The electric conductivity and the zero shear viscosity demonstrated three crossover concentrations at 0.004, 0.02, and 0.1 wt%. The viscosity was found to be scaled as ~c(1.5), ~c(0.5), ~c(1.5), and ~c(3.0) with increasing the sacran concentration. At 0.1 wt%, the sacran chain formed a weak gel which exhibits macroscopic liquid crystal domains including Schlieren texture. Therefore, these crossover concentrations are considered to be the overlap concentration, entanglement concentration, and gelation concentration (or critical polyelectrolyte concentration), respectively. Dielectric relaxation analysis exhibited the fact that sacran has two types of counterions with different counterion-polyion interaction, i.e., strongly bound and loosely bound counterions. The dielectric parameters such as relaxation time or relaxation strength are sensitive to both the entanglement concentration and the gelation concentration, but not the overlap concentration. The number density of bound counterions calculated from the relaxation strength revealed that the counterion is condensed on the sacran chain with raising the sacran concentrations. The decrease in the charge density of the sacran chain reduces the repulsive force between the chains and this would cause the helix transformation or gelation behavior. The chain conformation of sacran in pure water and the gelation mechanism are discussed in relation with the behavior of polyelectrolytes and liquid crystals.
The magnetoelastic behavior of bimodal magnetic elastomers consisting of magnetic particles, carbonyl iron, and nonmagnetic particles, zinc oxide, has been investigated by dynamic viscoelastic measurements. The storage modulus of bimodal magnetic elastomers increased under a magnetic field of 500 mT. The change in the storage modulus was enhanced by adding nonmagnetic particles at volume fractions above a certain volume fraction of 0.02, indicating the occurrence of stress transfer by a chain structure of magnetic particles via nonmagnetic particles. The critical volume fraction at 500 mT determined by percolation analysis was nearly independent of the diameter of nonmagnetic particles. However, at low magnetic fields below 160 mT, the critical volume fraction was found to decrease with the particle diameter. Substituting magnetic particles with nonmagnetic ones, the change in the storage modulus of bimodal magnetic elastomers monotonically decreased with the substitution ratio of magnetic particles. The mechanism of the enhanced magnetoelastic response for bimodal magnetic elastomers is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.