Abstract. The effects of 9 calcium antagonists on ABCG2/ BCRP-mediated resistance and transport were examined in HeLa and SN-38-resistant HeLa (HeLa/SN100) cells, overexpressing ABCG2/BCRP. Sensitivity to mitoxantrone, an ABCG2/BCRP substrate, in HeLa/SN100 cells was significantly reversed by the coexistence of the calcium antagonists, except for diltiazem and verapamil. The accelerated transport activity of Hoechst33342, an ABCG2/BCRP substrate, in HeLa/SN100 cells was significantly decreased by the presence of the calcium antagonists, except for diltiazem, nifedipine or verapamil, returning to the level of HeLa cells. The present study classifies the calcium antagonists into 3 categories: strong (benidipine, felodipine, nicardipine, nisoldipine and nitrendipine), moderate (amlodipine and nifedipine) and weak (diltiazem and verapamil) inhibitors of ABCG2/BCRP.
Them echanisms of the weak base-catalyzed generation of carbon monoxide (CO) and phenolf rom phenyl formate were investigated by experimental and theoretical methods. Kinetic studies revealedafirst-order reactioni nb oth phenyl formate and the base.T he reaction was found to proceed by an E2 a-eliminationp athway, which involves the abstraction of the formyl proton of phenyl formate,s imultaneously generating CO and phenoxide. Ther eactionr ate was affectedb yt he substituents on phenyl formate,t he polarity of solvents,a nd the basicity of bases.T he mechanistic insight obtained from these studies permitted the chemical control of the rate of CO generation, which was the key to the development of the external CO-free Pd-catalyzed phenoxycarbonylation of haloarenes at room temperature.B ecause of the mild reactionc onditions and wide substrate scope,t his phenoxycarbonylation constitutesageneral, safe, andp ractical method to synthesize arenecarboxylic acid esters.
The effects of a propolis extract obtained by supercritical fluid extraction on sensitivity to chemotherapeutic agents were examined in HeLa cells and resistant sublines thereof. In addition, the actions of propolis and caffeic acid phenethyl ester (CAPE), a constituent of propolis, on the multidrug efflux transporter P-glycoprotein/MDR1, were evaluated in paclitaxel-resistant HeLa/TXL cells (MDR1-overexpressing cells). In HeLa cells, the sensitivity to paclitaxel and doxorubicin, substrates of MDR1, was unchanged in the presence of propolis. In HeLa/TXL cells, propolis increased sensitivity to these MDR1 substrates. The accumulation of Rhodamine123, also a substrate for MDR1, by HeLa/TXL cells increased in the presence of 50 microg/mL, but not 10 microg/mL, of the extract. However, the growth inhibition of HeLa/TXL cells by paclitaxel was not changed by CAPE, although the accumulation of Rhodamine123 increased significantly in the presence of 100 microm, but not 1 nM or 1 microm, CAPE. Collectively, the extract was suggested to inhibit the function of MDR1 and to increase the sensitivity to MDR1 substrates in HeLa/TXL cells, effects likely to be caused by constituents other than CAPE.
Acquired resistance of cancer cells to various chemotherapeutic agents is known as multidrug resistance, and remains a critical factor in the success of cancer treatment. It is necessary to develop the inhibitors for multidrug resistance. The aim of this study was to examine the effects of eight α-adrenoceptor antagonists on ABCG2/BCRP-mediated resistance and transport. Previously established HeLa/SN100 cells, which overexpress ABCG2/BCRP but not ABCB1/MDR1, were used. The effects of the antagonists on sensitivity to mitoxantrone and the transport activity of Hoehst33342, both substrates for ABCG2/BCRP, were evaluated using the WST-1 assay and cellular kinetics, respectively. ABCG2/BCRP mRNA expression and the cell cycle were also examined by real-time RT-PCR and flow cytometry, respectively. Sensitivity to mitoxantrone was reversed by the α-adrenoceptor antagonists in a concentration-dependent manner, although such effects were also found in the parental HeLa cells. Levels of ABCG2/BCRP mRNA expression were not influenced by the antagonists. The transport activity of Hoechst33342 was decreased by doxazosin and prazosin, but unaffected by the other antagonists. In addition, doxazosin and prazosin increased the proportion of S phase cells in the cultures treated with mitoxantrone, whereas the other α-adrenoceptor antagonists increased the percentage of cells in G2/M phase. These findings suggested that doxazosin and prazosin reversed resistance mainly by inhibiting ABCG2/BCRP-mediated transport, but the others affected sensitivity to mitoxantrone via a different mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.