In eight hagfish species, it is known that chromosome elimination occurs during early embryogenesis, and some highly repetitive DNA families, restricted to germ cells, have been isolated. One of these families, "EEEo2," has been isolated as DNA fragments by restriction enzyme analyses from Eptatretus okinoseanus and E. cirrhatus. In this study, EEEo2 sequences were isolated from germline DNA in E. burgeri, Paramyxine sheni, and P. atami using PCR methods. Sequence analysis revealed that these sequences are intraspecifically homogeneous, except in E. burgeri, and are interspecifically conserved with heterogeneity. The intraspecific sequence variability tends to decrease as the copy number increases. These results indicate that EEEo2 has evolved in a concerted manner. Moreover, an ancestral repeating motif consisting of triplicate subrepeats was deduced. These results suggest that EEEo2 arose as an initial amplification of this subrepeat and has evolved by saltatory replication. Phylogenetic analyses suggested the possibility that EEEo2 in E. okinoseanus and E. cirrhatus has been subjected to strong homogenizing forces for concerted evolution, whereas the force is weak in E. burgeri. In addition, EEEo2 in P. sheni and P. atami appear to have been incompletely subjected to these forces. Chromosomal in situ hybridization experiments revealed that EEEo2 sequences were located along almost their entire length of several heterochromatic chromosomes that are restricted to germ cells. These chromosomes are disposed to form a secondary association during the first meiotic metaphases, except in P. sheni. This chromosomal distribution may promote a concerted mode of sequence evolution in both nonhomologous chromosomes and homologous chromosomes and reflect the differential driving forces between species.
It is known that in eight hagfishes chromosome elimination occurs during early embryogenesis. The eliminated chromosomes are mostly C-band positive, so that none of the somatic cells have any C-band-positive chromatin. Recently, some highly repetitive DNA sequences have been reported as eliminated elements in these hagfishes based on molecular biological methods. However, no germline-restricted repetitive DNA have been directly isolated from the Japanese hagfish Eptatretus burgeri, from which approximately 21% of the total DNA is eliminated from presumptive somatic cells. Through electrophoretic investigation after digestion with restriction endonucleases, two DNA families that are restricted to germline DNA were isolated. Molecular cloning and sequence analysis revealed that these families are composed of closely related sequences of 64 and 57bp in length, respectively. Southern blot hybridization revealed that the two DNA families are restricted to germline DNA and were thus named EEEb1 and EEEb2, respectively. Moreover, these eliminated elements were highly and tandemly repeated, and it is predicted that they might amplify by saltatory replication and have evolved in a concerted manner. By densitometric scanning, EEEb1 and EEEb2 were found to amount to make up approximately 18.5 and 0.024% of the total germline genomic DNA, accounting for 88.6% of the total eliminated DNA. A fluorescence in situ hybridization experiment demonstrated that EEEb1 is located on all C-band-positive chromosomes that are limited to germ cells, suggesting that EEEb1 is the primary component of eliminated DNA of E. burgeri.
5S ribosomal DNAs (rDNAs) from two cyprinid species, Acheilognathus tabira subsp. 1 and Cyprinus carpio, were isolated and sequenced. Tandemly arranged rDNAs were 179 bp in A. tabira and 204 bp in C. carpio. The non-transcribed spacer region elucidates the size difference of 5S rDNA between the two species. Fluorescence in-situ hybridization (FISH) localized 5S rDNAs to the short arms of two pairs of chromosomes in A. tabira and two to four pairs in C. carpio. Subsequent analysis demonstrated NORs in one pair of chromosomes in both species. Both the NOR and 5S rDNA are carried by a chromosome pair in A. tabira, but they are located on different chromosomes separately in C. carpio. Karyotype evolution by tetraploidy seems complex in cyprinid species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.