The coupled fire-atmosphere model consisting of the Weather and Forecasting (WRF) Model coupled with the fire-spread model (SFIRE) module has been used to simulate a bushfire at D'Estrees Bay on Kangaroo Island, South Australia, in December 2007. Initial conditions for the simulations were provided by two global analyses: the GFS operational analysis and ERA-Interim. For each NWP initialization, the simulations were run with and without feedback from the fire to the atmospheric model. The focus of this study was examining how the energy fluxes from the simulated fire modified the local meteorological environment. With feedback enabled, the propagation speed of the sea-breeze frontal line was faster and vertical motion in the frontal zone was enhanced. For one of the initial conditions with feedback on, a vortex developed adjacent to the head fire and remained present for over 5 h of simulation time. The vortex was not present without fire-atmosphere feedback. The results show that the energy fluxes released by a fire can effect significant changes on the surrounding mesoscale atmosphere. This has implications for the appropriate use of weather parameters extracted from NWP and used in prediction for fire operations. These meteorological modifications also have implications for anticipating likely fire behavior.
During the first two days of the fire, there were two pyrocumulonimbus (pyroCb) events and two destructive evening fire runs. Over 160 homes were destroyed and there were two fatalities. This case study examines in detail the links between the meteorological observations and the fire behaviour reconstruction.
The coupled atmosphere–fire spread model “WRF-SFIRE” has been used to simulate a fire where extreme fire behavior was observed. Tall flames and a dense convective smoke column were features of the fire as it burned rapidly up the Rocky River gully on Kangaroo Island, South Australia. WRF-SFIRE simulations of the event show a number of interesting dynamical processes resulting from fire–atmosphere feedback, including the following: fire spread was sensitive to small changes in mean wind direction; fire perimeter was affected by wind convergence resulting from interactions between the fire, atmosphere, and local topography; and the fire plume mixed high-momentum air from above a strong subsidence inversion. At 1-min intervals, output from the simulations showed fire spread exhibiting fast and slow pulses. These pulses occurred coincident with the passage of mesoscale convective (Rayleigh–Bénard) cells in the planetary boundary layer. Simulations show that feedback between the fire and atmosphere may have contributed to the observed extreme fire behavior. The findings raise questions as to the appropriate information to include in meteorological forecasts for fires as well as future use of coupled and uncoupled fire simulation models in both operational and research settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.