This study was designed to evaluate the suitability of a novel bioabsorbable material in treating bone defects. A poly(desaminotyrosyl-tyrosine-ethyl ester carbonate) (PDTE carbonate) membrane (thickness 0.2-0.3 mm) was implanted into the mandibular angle of 20 New Zealand White rabbits to cover a through-and-through defect (12!6 mm). In group 1, the defects were left unfilled but covered with membrane and in group 2 the defects were filled with bioactive glass mesh and covered with membrane, too. Controls were left uncovered and unfilled. The animals were followed for 6, 12, 24 and 52 weeks, respectively. The material was evaluated by qualitative analysis of histological reactions and newly formed bone.We found that PDTE carbonate elicited a modest foreign body reaction in the tissues, which was uniform throughout the study. New bone formation was seen in all samples after six weeks. Group 1 had more new bone formation until 24 weeks and after this the difference settled. Based on findings of this study it was concluded that PDTE carbonate membranes have good biocompatibility and are sufficient to enhance bone growth without additional supportive matrix.
Standardized bilateral through-and-through defects (12x6 mm) were created extraorally in the mandibular angle of 18 New Zealand White rabbits. Animals were divided in to three groups (n=6) according to the intended healing time. On the left side, defects were covered with a poly(desaminotyrosyl-tyrosine-ethyl ester carbonate) (PDTE carbonate) membrane wrapped around the inferior border of the mandible and fixed with bioabsorbable sutures. On the right side, the defects were filled with a mesh made of bioactive glass 13-93 and 3 wt% chitosan. The defects were covered with the same membranes. Periosteal flap was sutured over the membrane. Radiographically, bone ingrowth was seen in all specimens at 12 weeks postoperatively. At 24 weeks, completely ossified area remained approximately at the same level as at 12 weeks, but the non-ossified area decreased to almost zero. However, the bioactive glass mesh did not improve the results. Nevertheless, enveloping the defect with PDTE carbonate membrane seemed to play a crucial role in new bone formation. Based on these results, we conclude that tyrosine polycarbonate is a promising new material for guided bone regeneration.
This study reports of the novel water-induced shape-memory of bioabsorbable poly(D,L-lactide). We have developed an orientation-based programming process that generates an ability for poly(D,L-lactide) to transform its shape at 37°C in an aqueous environment without external energy and to adapt to a predefined stress level by stress generation or relaxation. In this orientation-programming process, polymer material is deformed and oriented at an elevated temperature and subsequently cooled down while retaining its deformed shape, tension, and polymer chain entanglements. At body temperature and in an aqueous environment, the shape-memory is activated by the plasticizing effect of water molecules diffused into the polymer matrix causing an entropy-driven directed relaxation of oriented and preloaded polymer chains. This plasticizing effect is clearly seen as a decrease of the onset glass transition temperature by 10-13°C. We found that γ-irradiation used for sterilizing the orientation-programmed materials strongly affected the shape-recovery rate, but not the recovery ratio. Both non-γ-irradiated and γ-irradiated sample materials showed excellent shape-recovery ratios during a ten-week test period: 94 and 97%, respectively. The orientation-programmed materials generated a predefined load in a 37°C aqueous environment when their shape-recovery was restricted, but when external tension was applied to them, they adapted to the predefined level by stress relaxation. Our results show that functionality in terms of shape-memory can be generated in bioabsorbable polymers without tailoring the polymer chain structure thus shortening the time from development of technology to its utilization in medical devices.
Different bioabsorbable polymers and their co-polymers have been used to construct an optimal material for guided bone regeneration applications. Our aim was to evaluate a novel bioabsorbable material in a soft tissue environment. In this study, a poly(DTE carbonate) membrane (0.2-0.3 mm) was implanted into 20 NZW rabbits' subcutaneous pouches for 6, 12, 24 and 52 weeks. The material was evaluated by means of histological reactions to the material and mechanical properties of the membrane. Based on this study, it can be concluded that poly(DTE carbonate) elicited a very modest foreign body reaction in the soft tissues. This reaction was uniform throughout the study. Varying amounts of calcification was seen in the fibrous capsule surrounding the implant. The number of calcified bodies did not correlate to healing time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.