We investigated reconstructed images of light-in-flight recording by holographic microscopy when recording conditions are changed. As the conditions, we focused on incident angle of the reference light pulse and that of the object light pulse.
Observing light propagation plays an important role in clarifying ultrafast phenomena occurring on femtosecond to picosecond time scales. In particular, observing the ultrafast behavior of polarized light is useful for various fields. We have developed a technique based on Polarization Light-in-Flight Holography, which can record light propagation as a motion picture that can provide information about the polarization direction. Here we demonstrate motion-picture recording of a phenomenon, which is characteristic of polarized light, by using the proposed technique. As a phenomenon, we adopted the behavior of a light pulse incident at Brewster’s angle. We succeeded in recording the light reflection of specific polarized light by the proposed optical setup. The method of recording the motion-picture, reconstruction procedure, and the quantitative evaluation of the results are demonstrated.
Digital light-in-flight recording by holography is a promising technique for observing a propagating ultrashort light pulse as a motion picture. A typical reconstruction process of digital light-in-flight recording by holography, we extract holograms without considering the relationship between the lateral size of the extracted hologram (sub-hologram) and the size of an area where the propagating ultrashort light pulse and an image sensor overlap. The area records the image of the ultrashort light pulse at a certain moment. In this study, by considering the size of the small interference fringe image, we assessed the influence of the lateral size of the hologram on the reconstructed image. We defined the size of the area in which the interference fringe image at a moment is recorded. Then, we examined the reconstructed images by changing the lateral size of the sub-hologram. As a result, we found that the lateral size of the hologram does not affect the size of the reconstructed image but the spatial resolution of the reconstructed images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.