Angiogenesis is tightly associated with the outgrowth of adipose tissue, leading to obesity, which is a risk factor for type 2 diabetes and hypertension, mainly because expanding adipose tissue requires an increased nutrient supply from blood vessels. Therefore, induction of vessel abnormality by adipokines has been well-studied, whereas how altered vascular function promotes obesity is relatively unexplored. Also, surviving Prox1 heterozygous mice have shown abnormal lymphatic patterning and adult-onset obesity, indicating that accumulation of adipocytes could be closely linked with lymphatic function. Here, we propose a new antiobesity strategy based on enhancement of lymphatic and blood vessel integrity with apelin. Apelin knockout (KO) mice fed a high-fat diet (HFD) showed an obese phenotype associated with abnormal lymphatic and blood vessel enlargement. Fatty acids present in the HFD induced hyperpermeability of endothelial cells, causing adipocyte differentiation, whereas apelin promoted vascular stabilization. Moreover, treatment of apelin KO mice with a selective cyclooxygenase-2 inhibitor, celecoxib, that were fed an HFD improved vascular function and also attenuated obesity. Finally, apelin transgenic mice showed decreased subcutaneous adipose tissue attributable to inhibition of HFD-induced hyperpermeability of vessels. These results indicate that apelin inhibits HFD-induced obesity by enhancing vessel integrity. Apelin could serve as a therapeutic target for treating obesity and related diseases.
We have previously demonstrated that UVB irradiation resulted in impaired function of cutaneous lymphatic vessels, suggesting a crucial role of lymphatic function in the mediation of UVB-induced inflammation. Nonetheless, the molecular mechanisms of lymphatic involvement in inflammation have remained unclear. Here, we show that vascular endothelial growth factor (VEGF)-C expression is downregulated after UVB irradiation, associated with enlargement of lymphatic vessels and with an increase of macrophage infiltration in the dermis. To determine whether activation of VEGF-C/VEGFR-3 signaling might reduce UVB-induced inflammation, mice were exposed to a single dose of UVB irradiation together with intradermal injection of mutant VEGF-C (Cys156Ser), which specifically binds to VEGFR-3 on lymphatic endothelium. We found that the activation of VEGFR-3 attenuated UVB-induced edema formation, associated with a decreased number of CD11b-positive macrophages. Moreover, mutant VEGF-C injection inhibited UVB-induced enlargement of lymphatic vessels and also induced the proliferation of lymphatic endothelial cells. In contrast, treatment with mutant VEGF-C had no effect on blood vessel size or number. These results demonstrate that UVB-induced lymphatic impairment is mediated by downregulation of VEGF-C expression and that the activation of the VEGF-C/VEGFR-3 pathway might represent a feasible target for the prevention of UVB-induced inflammation by promoting lymphangiogenesis.
Apelin, the ligand of the G protein-coupled receptor APJ, is involved in the regulation of cardiovascular functions, fluid homeostasis, and vessel formation. Recent reports indicate that apelin secreted from endothelial cells mediates APJ regulation of blood vessel caliber size; however, the function of apelin in lymphatic vessels is unclear. Here we report that APJ was expressed by human lymphatic endothelial cells and that apelin induced migration and cord formation of lymphatic endothelial cells dose-dependently in vitro. Furthermore, permeability assays demonstrated that apelin stabilizes lymphatic endothelial cells. In vivo, transgenic mice harboring apelin under the control of keratin 14 (K14-apelin) exhibited attenuated UVBinduced edema and a decreased number of CD11b-positive macrophages. Moreover, activation of apelin/APJ signaling inhibited UVB-induced enlargement of lymphatic and blood vessels. Finally, K14-apelin mice blocked the hyperpermeability of lymphatic vessels in inflamed skin. These results indicate that apelin plays a functional role in the stabilization of lymphatic vessels in inflamed tissues and that apelin might be a suitable target for prevention of UVB-induced inflammation.
The cutaneous lymphatic system plays a major role in tissue fluid homeostasis and inflammation of the skin. Although several lymphangiogenic factors are known to be involved in the formation of lymphatic vessels, the molecular mechanisms that maintain lymphatic integrity and control the functional drainage of interstitial fluid and resolution of inflammation remain unknown. Here we show that angiopoietin-1 (Ang1) enhances lymphatic integrity and function during inflammation. Ang1 transgenic mice under the control of keratin-14 (K14-Ang1) showed attenuated edema formation and inflammation after UV B (UVB) exposure. After UVB irradiation, blood vascular permeability was inhibited in K14-Ang1 mice compared with wild-type (WT) mice. Moreover, lymphatic vessels of WT mice were markedly enlarged and leaky in inflamed skin, whereas K14-Ang1 mice showed relatively contracted lymphatic vessels together with enhanced lymphatic vascularization. Expression of endothelial-specific tight junction molecules claudin-5 and zonula occludens protein 1 (ZO-1) was strongly down-regulated in the inflamed lymphatic vessels of UVB-exposed WT mice, whereas down-regulation of both claudin-5 and ZO-1 was blocked in UVB-exposed K14-Ang1 mice. In vitro studies revealed that the stability of lymphatic endothelial cells was enhanced in the presence of Ang1, presumably via up-regulation of claudin-5, as well as ZO-1. Claudin-5 knockdown markedly increased the permeability of lymphatic endothelial cells. Overall, our data strongly support the idea that Ang1/Tie2 signaling promotes lymphatic integrity by modulating tight junction molecule expression during inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.