We disclose herein the first synthetic method that is capable of offering heteroaryl[b]quinolines (HA[b]Qs) with structural diversity, which include tricyclic and tetracyclic structures with (benzo)thienyl, (benzo)furanyl, and indolyl rings. The target HA[b]Q is addressed by the annulation of o-acylanilines and MeO–heteroarenes with the aid of an indium Lewis acid that effectively works to make two different types of the N–C and C–C bonds in one batch. A series of indolo[3,2-b]quinolines prepared here can be subsequently transformed to structurally unprecedented cryptolepine derivatives. Mechanistic studies showed that the N–C bond formation is followed by the C–C bond formation. The indium-catalyzed annulation reaction thus starts with the nucleophilic attack of the NH2 group of o-acylanilines to the MeO-connected carbon atom of the heteroaryl ring in an SNAr fashion, and thereby the N–C bond is formed. The resulting intermediate then cyclizes to make the C–C bond through the nucleophilic attack of the heteroaryl-ring-based carbon atom to the carbonyl carbon atom, providing the HA[b]Q after aromatizing dehydration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.