Homozygosity for the G allele of rs6983267 at 8q24 increases colorectal cancer (CRC) risk approximately 1.5 fold. We report here that the risk allele G shows copy number increase during CRC development. Our computer algorithm, Enhancer Element Locator (EEL), identified an enhancer element that contains rs6983267. The element drove expression of a reporter gene in a pattern that is consistent with regulation by the key CRC pathway Wnt. rs6983267 affects a binding site for the Wnt-regulated transcription factor TCF4, with the risk allele G showing stronger binding in vitro and in vivo. Genome-wide ChIP assay revealed the element as the strongest TCF4 binding site within 1 Mb of MYC. An unambiguous correlation between rs6983267 genotype and MYC expression was not detected, and additional work is required to scrutinize all possible targets of the enhancer. Our work provides evidence that the common CRC predisposition associated with 8q24 arises from enhanced responsiveness to Wnt signaling.
SUMMARYOverexpression screens are used to explore gene functions in Drosophila, but this strategy suffers from the lack of comprehensive and systematic fly strain collections and efficient methods for generating such collections. Here, we present a strategy that could be used efficiently to generate large numbers of transgenic Drosophila strains, and a collection of 1149 UAS-ORF fly lines that were created with the site-specific ΦC31 integrase method. For this collection, we used a set of 655 genes that were cloned as two variants, either as an open reading frame (ORF) with a native stop codon or with a C-terminal 3xHA tag. To streamline the procedure for transgenic fly generation, we demonstrate the utility of injecting pools of plasmids into embryos, each plasmid containing a randomised sequence (barcode) that serves as a unique identifier for plasmids and, subsequently, fly strains. We also developed a swapping technique that facilitates the rapid exchange of promoters and epitope tags in vivo, expanding the versatility of the ORF collection. The work described here serves as the basis of a systematic library of Gal4/UAS-regulated transgenes.
Many high-throughput loss-of-function analyses of the eukaryotic cell cycle have relied on the unicellular yeast species Saccharomyces cerevisiae and Schizosaccharomyces pombe. In multicellular organisms, however, additional control mechanisms regulate the cell cycle to specify the size of the organism and its constituent organs. To identify such genes, here we analysed the effect of the loss of function of 70% of Drosophila genes (including 90% of genes conserved in human) on cell-cycle progression of S2 cells using flow cytometry. To address redundancy, we also targeted genes involved in protein phosphorylation simultaneously with their homologues. We identify genes that control cell size, cytokinesis, cell death and/or apoptosis, and the G1 and G2/M phases of the cell cycle. Classification of the genes into pathways by unsupervised hierarchical clustering on the basis of these phenotypes shows that, in addition to classical regulatory mechanisms such as Myc/Max, Cyclin/Cdk and E2F, cell-cycle progression in S2 cells is controlled by vesicular and nuclear transport proteins, COP9 signalosome activity and four extracellular-signal-regulated pathways (Wnt, p38betaMAPK, FRAP/TOR and JAK/STAT). In addition, by simultaneously analysing several phenotypes, we identify a translational regulator, eIF-3p66, that specifically affects the Cyclin/Cdk pathway activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.