Extreme roll motion of ships can be caused by several phenomena, one of which is parametric roll resonance. Several incidents occurred unexpectedly around the millennium and caused vast fiscal losses on large container vessels. The phenomenon is now well understood and some consider parametric roll a curiosity, others have concerns. This study employs novel signalbased detection algorithms to analyse logged motion data from a container vessel (2800 TEU) and a large car and truck carrier (LCTC) during one year at sea. The scope of the study is to assess the performance and robustness of the detection algorithms in real conditions, and to evaluate the frequency of parametric roll events on the selected vessels. Detection performance is scrutinised through the validation of the detected events using owners' standard methods, and supported by available wave radar data. Further, a bivariate statistical analysis of the outcome of the signal-based detectors is performed to assess the real life false alarm probability. It is shown that detection robustness and very low false warning rates are obtained. The study concludes that small parametric roll events are occurring, and that the proposed signal-based monitoring system is a simple and effective mean to provide timely warning of resonance conditions.
In this paper Ikeda's method for roll damping prediction is revisited and the applicability of the method to modern volume carriers is considered. For volume carriers the hull lift and bilge keel components are the dominating components and the estimation of these components in the original method are benchmarked and scrutinized. It is concluded that the speed dependence of the bilge keels damping is underestimated by the original method. This is partially explained by that Ikeda seems to have underestimated the lift force of the bilge keels in his analytical expressions. Correcting for this and taking account of the lift force-generated pressure on the hull surface gives overall better agreement with model tests. It is also concluded that the hull lift damping component is significantly overestimated with the original method. Non-viscid CFD is used to propose a new generic expression for estimating the lift coefficients for volume carriers which greatly improve the accuracy in comparison to model test results. With these improvements Ikeda's method is revitalized and the applicability is extended to unconventional volume carriers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.