In this paper, the accuracy of material decomposition (MD) using an energy discriminating photon counting detector was studied. An MD framework was established and validated using calcium hydroxyapatite (CaHA) inserts of known densities (50 mg/cm 3 , 100 mg/cm 3 , 250 mg/cm 3 , 400 mg/cm 3), and diameters (1.2, 3.0, and 5.0 mm). These inserts were placed in a cardiac rod phantom that mimics a tissue equivalent heart and measured using an experimental photon counting detector cone beam computed tomography (PCD-CBCT) setup. The quantitative coronary calcium scores (density, mass, and volume) obtained from the MD framework were compared with the nominal values. In addition, three different calibration techniques, signal-to-equivalent thickness calibration (STC), polynomial correction (PC), and projected equivalent thickness calibration (PETC) were compared to investigate the effect of the calibration method on the quantitative values. The obtained MD estimates agreed well with the nominal values for density (mass) with mean absolute percent errors (MAPEs) 8 ± 11% (9 ± 15%) and 4 ± 6% (9 ± 14%) for STC and PETC calibration methods, respectively. PC displayed large MAPEs for density (27 ± 9%), and mass (25 ± 12%). Volume estimation resulted in large deviations between true and measured values with notable MAPEs for STC (40 ± 90%), PC (40 ± 80%), and PETC (40 ± 90%). The framework demonstrated the feasibility of quantitative CaHA mass and density scoring using PCD-CBCT.
Computed tomography (CT) is the reference method for cardiac imaging, but concerns have been raised regarding the radiation dose of CT examinations. Recently, photon counting detectors (PCDs) and interior tomography, in which the radiation beam is limited to the organ-of-interest, have been suggested for patient dose reduction. In this study, we investigated interior PCD-CT (iPCD-CT) for non-enhanced quantification of coronary artery calcium (CAC) using an anthropomorphic torso phantom and ex vivo coronary artery samples. We reconstructed the iPCD-CT measurements with filtered back projection (FBP), iterative total variation (TV) regularization, padded FBP, and adaptively detruncated FBP and adaptively detruncated TV. We compared the organ doses between conventional CT and iPCD-CT geometries, assessed the truncation and cupping artifacts with iPCD-CT, and evaluated the CAC quantification performance of iPCD-CT. With approximately the same effective dose between conventional CT geometry (0.30 mSv) and interior PCD-CT with 10.2 cm field-of-view (0.27 mSv), the organ dose of the heart was increased by 52.3% with interior PCD-CT when compared to CT. Conversely, the organ doses to peripheral and radiosensitive organs, such as the stomach (55.0% reduction), were often reduced with interior PCD-CT. FBP and TV did not sufficiently reduce the truncation artifact, whereas padded FBP and adaptively detruncated FBP and TV yielded satisfactory truncation artifact reduction. Notably, the adaptive detruncation algorithm reduced truncation artifacts effectively when it was combined with reconstruction detrending. With this approach, the CAC quantification accuracy was good, and the coronary artery disease grade reclassification rate was particularly low (5.6%). Thus, our results confirm that CAC quantification can be performed with the interior CT geometry, that the artifacts are effectively reduced with suitable interior reconstruction methods, and that interior tomography provides efficient patient dose reduction.
The aim of this study is to compare how different calibration methods influence the image quality of photon-counting detector computed tomography (PCD-CT) at high and low photon fluxes. We investigate the performance of flat-field correction, signal-to-equivalent thickness calibration (STC), and polynomial correction (PC) methods using polymethyl methacrylate (PMMA) and iron as calibration materials. Two different cylindrical imaging phantoms containing contrast targets were scanned: an agar phantom and a phantom consisting of titanium hip implant embedded in agar. The scans were acquired using 120 kVp, and the energy thresholds of the PCD were set at 10 keV and 60 keV to obtain low energy (10–60 keV), high energy (60–120 keV) and total energy images (10–120 keV). Additionally, virtual monochromatic images (VMIs) with energies between 60–180 keV with 20 keV increments were generated from PC data. The reconstructions were made using filtered back projection, and image quality was assessed by evaluating image noise, contrast-to-noise ratio (CNR), and image uniformity. Overall, STC with PMMA as calibration material yielded the best image quality in terms of CNR and uniformity. Flat-field correction produced uniform reconstruction at low photon flux, but the performance degraded substantially at high flux. STC with iron as calibration material did not improve the reconstructions of the titanium hip implant. The beam hardening effects arising from metal were reduced when the VMI energy was increased while the CNR evaluated from agar phantom decreased with increasing energy of the VMI. Over the methods investigated, STC with PMMA was the most optimal calibration method for PCD-CT, yielding excellent image uniformity with both photon flux conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.