The minimization of power consumption is an important design constraint for circuits used in portable devices. The switching activity of a circuit node in a CMOS digital circuit directly contributes to overall power dissipation. By approximating the switching activity of circuit nodes as internal switching probabilities in Binary Decision Diagrams (BDDs), it is possible to estimate the dynamic power dissipation characteristic of circuits resulting from a structural mapping of a BDD. A technique for minimizing the overall sum of switching probabilities is presented. The method is based on efficient local operations on a BDD representing the functionality of the circuit to be realized. The resulting circuit that is obtained by mapping the BDD to CMOS Pass Transistors has in simulation (using a commercially available process model) shown reduced power dissipation characteristic. Experimental results on a set of MCNC benchmarks are given for this technique.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.