Good potential: A biomimetic model of the iron hydrogenase active site functions as a catalyst for electrochemical proton reduction at relatively moderate negative potentials. The catalytic cycle (see scheme) involves the protonation of the azadithiolate nitrogen atom as its initial step. This system may eventually be used to achieve light‐activated hydrogen evolution.
Porosity and chirality are two of the most important properties for materials in the chemical and pharmaceutical industry. Inorganic microporous materials such as zeolites have been widely used in ion-exchange, selective sorption/separation and catalytic processes. The pore size and shape in zeolites play important roles for specific applications. Chiral inorganic microporous materials are particularly desirable with respect to their possible use in enantioselective sorption, separation and catalysis. At present, among the 179 zeolite framework types reported, only three exhibit chiral frameworks. Synthesizing enantiopure, porous tetrahedral framework structures represents a great challenge for chemists. Here, we report the silicogermanates SU-32 (polymorph A), SU-15 (polymorph B) (SU, Stockholm University) and a hypothetical polymorph C, all built by different stacking of a novel building layer. Whereas polymorphs B and C are achiral, each crystal of polymorph A exhibits only one hand and has an intrinsically chiral zeolite structure. SU-15 and SU-32 are thermally stable on calcination.
The synthesis and characterization of six ruthenium(II) bistridentate polypyridyl complexes is described. These were designed on the basis of a new approach to increase the excited-state lifetime of ruthenium(II) bisterpyridine-type complexes. By the use of a bipyridylpyridyl methane ligand in place of terpyridine, the coordination environment of the metal ion becomes nearly octahedral and the rate of deactivation via ligand-field (i.e., metal-centered) states was reduced as shown by temperature-dependent emission lifetime studies. Still, the possibility to make quasi-linear donor-ruthenium-acceptor triads is maintained in the complexes. The most promising complex shows an excited-state lifetime of tau = 15 ns in alcohol solutions at room temperature, which should be compared to a lifetime of tau = 0.25 ns for [Ru(tpy)2]2+. The X-ray structure of the new complex indeed shows a more octahedral geometry than that of [Ru(tpy)2]2+. Most importantly, the high excited-state energy was retained, and thus, so was the potential high reactivity of the excited complex, which has not been the case with previously published strategies based on bistridentate complexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.