The estimation of uncertainty of an analytical result has become important in analytical chemistry. It is especially difficult to determine uncertainties for multiresidue methods, e.g. for pesticides in fruit and vegetables, as the varieties of pesticide/commodity combinations are many. In the present study, recommendations from the International Organisation for Standardisation's (ISO) Guide to the Expression of Uncertainty and the EURACHEM/CITAC guide Quantifying Uncertainty in Analytical Measurements were followed to estimate the expanded uncertainties for 153 pesticides in fruit and vegetables. Data from in-house validation were used in the estimation of the uncertainty. No significant difference in the relative standard deviation for reproducibility (RSD(R)) were found between the different concentration levels at concentration levels exceeding 2.5 times the detection limit. Therefore, it was possible to pool the RSD(R) within a single matrix. However, a difference in RSD(R) between matrices was seen, thus the poorest RSD(R) of the investigated matrices was chosen for the uncertainty estimation. The expanded uncertainties ranged from 7 to 78% with an average of 32% and median of 32%. Furthermore, only RSD(R) contributed to the uncertainty estimation.
The expanding knowledge of the health impacts of the metabolic activities of the gut microbiota reinforces the current interest in engineered probiotics. Tryptophan metabolites, in particular indole lactic acid (ILA), are attractive candidates as potential therapeutic agents. ILA is a promising compound with multiple beneficial effects including amelioration colitis in rodent models of necrotizing enterocolitis, as well as improved infant immune system maturation. In this work we engineered and characterized in vitro and in vivo an Escherichia coli Nissle 1917 strain that produces ILA. The 2-step metabolic pathway comprises aminotransferases native of E. coli and a dehydrogenase introduced from Bifidobacterium longum subspecies infantis. Our results show a robust engineered probiotic that produces 73.4 ± 47.2 nmol and 149 ± 123.6 nmol of ILA per gram of fecal and cecal matter, respectively, three days after colonization in a mouse model. In addition, hereby is reported an engineered-probiotic-related increase of ILA in the systemic circulation of the treated mice. This strain serves as proof of concept for the transfer of capacity to produce ILA in vivo and as ILA emerges as a potent microbial metabolite against gastrointestinal inflammation, further development of this strain offers efficient options for ILA-focused therapeutic interventions in situ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.