Anomaly detection has become an indispensable tool for modern society, applied in a wide range of applications, from detecting fraudulent transactions to malignant brain tumors. Over time, many anomaly detection techniques have been introduced. However, in general, they all suffer from the same problem: lack of data that represents anomalous behaviour. As anomalous behaviour is usually costly (or dangerous) for a system, it is difficult to gather enough data that represents such behaviour. This, in turn, makes it difficult to develop and evaluate anomaly detection techniques. Recently, generative adversarial networks (GANs) have attracted much attention in anomaly detection research, due to their unique ability to generate new data. In this paper, we present a systematic review of the literature in this area, covering 128 papers. The goal of this review paper is to analyze the relation between anomaly detection techniques and types of GANs, to identify the most common application domains for GAN-assisted and GAN-based anomaly detection, and to assemble information on datasets and performance metrics used to assess them. Our study helps researchers and practitioners to find the most suitable GAN-assisted anomaly detection technique for their application. In addition, we present a research roadmap for future studies in this area. In summary, GANs are used in anomaly detection to address the problem of insufficient amount of data for the anomalous behaviour, either through data augmentation or representation learning. The most commonly used GAN architectures are DCGANs, standard GANs, and cGANs. The primary application domains include medicine, surveillance and intrusion detection.
Anomaly detection has become an indispensable tool for modern society, applied in a wide range of applications, from detecting fraudulent transactions to malignant brain tumours. Over time, many anomaly detection techniques have been introduced. However, in general, they all suffer from the same problem: a lack of data that represents anomalous behaviour. As anomalous behaviour is usually costly (or dangerous) for a system, it is difficult to gather enough data that represents such behaviour. This, in turn, makes it difficult to develop and evaluate anomaly detection techniques. Recently, generative adversarial networks (GANs) have attracted a great deal of attention in anomaly detection research, due to their unique ability to generate new data. In this paper, we present a systematic literature review of the applications of GANs in anomaly detection, covering 128 papers on the subject. The goal of this review paper is to analyze and summarize: (1) which anomaly detection techniques can benefit from certain types of GANs, and how, (2) in which application domains GAN-assisted anomaly detection techniques have been applied, and (3) which datasets and performance metrics have been used to evaluate these techniques. Our study helps researchers and practitioners to find the most suitable GAN-assisted anomaly detection technique for their application. In addition, we present a research roadmap for future studies in this area.
Control theory has proven to be a practical approach for the design and implementation of controllers, which does not inherit the problems of non-control theoretic controllers due to its strong mathematical background. State-of-the-art auto-scaling controllers suffer from one or more of the following limitations: (1) lack of a reliable performance model, (2) using a performance model with low scalability, tractability, or fidelity, (3) being application- or architecture-specific leading to low extendability, and (4) no guarantee on their efficiency. Consequently, in this article, we strive to mitigate these problems by leveraging an adaptive controller, which is composed of a neural network as the performance model and a Proportional-Integral-Derivative (PID) controller as the scaling engine. More specifically, we design, implement, and analyze different flavours of these adaptive and non-adaptive controllers, and we compare and contrast them against each other to find the most suitable one for managing containerized cloud software systems at runtime. The controller’s objective is to maintain the response time of the controlled software system in a pre-defined range, and meeting the Service-level Agreements, while leading to efficient resource provisioning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.