Detrimental and beneficial interactions between co-colonizing bacteria may influence the course of infections. In cystic fibrosis (CF) airways, Staphylococcus aureus prevails in childhood, whereas Pseudomonas aeruginosa progressively predominates thereafter. While a range of interactions has been identified, it is unclear if these represent specific adaptations or correlated responses to other aspects of the environment. Here, we investigate how P. aeruginosa adapts to S. aureus by evolving P. aeruginosa in the presence and absence of S. aureus. P. aeruginosa populations that evolved for 150 generations were sequenced and compared to the ancestor strain. Mutations in the Wsp signaling system were identified in both treatments and likely occurred because of low oxygen availability. Despite showing increased killing activity, wsp mutants were less fit in the presence of S. aureus. In contrast, mutations in lipopolysaccharide (LPS) biosynthesis occurred exclusively in co-cultures with S. aureus and conferred a fitness gain in its presence. Moreover, they increased resistance towards beta-lactam antibiotics. Strikingly, both mutations in wsp and LPS genes are observed in clinical isolates from CF-patients. Our results suggest that P. aeruginosa LPS mutations are a direct consequence of S. aureus imposed selection in vitro.
BackgroundCo-colonization by Pseudomonas aeruginosa and Staphylococcus aureus is frequent in cystic fibrosis patients. Polymicrobial infections involve both detrimental and beneficial interactions between different bacterial species. Such interactions potentially indirectly impact the human host through virulence, antibiosis and immunomodulation.ResultsHere we explored the responses triggered by the encounter of these two pathogens to identify early processes that are important for survival when facing a potential competitor. Transcriptional profiles of both bacteria were obtained after 3 h co-culture and compared to the respective mono-culture using RNAseq. Global responses in both bacteria included competition for nitrogen sources, amino acids and increased tRNA levels. Both organisms also induced lysogenic mechanisms related to prophage induction (S. aureus) and R- and F- pyocin synthesis (P. aeruginosa), possibly as a response to stress resulting from nutrient limitation or cell damage. Specific responses in S. aureus included increased expression of de novo and salvation pathways for purine and pyrimidine synthesis, a switch to glucose fermentation, and decreased expression of major virulence factors and global regulators.ConclusionsTaken together, transcriptomic data indicate that early responses between P. aeruginosa and S. aureus involve competition for resources and metabolic adaptations, rather than the expression of bacteria- or host-directed virulence factors.Electronic supplementary materialThe online version of this article (10.1186/s12864-018-5398-y) contains supplementary material, which is available to authorized users.
Background: Chronic airway infection by Pseudomonas aeruginosa considerably contributes to lung tissue destruction and impairment of pulmonary function in cystic-fibrosis (CF) patients. Complex interplays between P. aeruginosa and other co-colonizing pathogens including Staphylococcus aureus, Burkholderia sp., and Klebsiella pneumoniae may be crucial for pathogenesis and disease progression.Methods: We generated a library of PA14 transposon insertion mutants to identify P. aeruginosa genes required for exploitative and direct competitions with S. aureus, Burkholderia cenocepacia, and K. pneumoniae.Results: Whereas wild-type PA14 inhibited S. aureus growth, two transposon insertions located in pqsC and carB, resulted in reduced growth inhibition. PqsC is involved in the synthesis of 4-hydroxy-2-alkylquinolines (HAQs), a family of molecules having antibacterial properties, while carB is a key gene in pyrimidine biosynthesis. The carB mutant was also unable to grow in the presence of B. cepacia and K. pneumoniae but not Escherichia coli and S. epidermidis. We further identified a transposon insertion in purF, encoding a key enzyme of purine metabolism. This mutant displayed a severe growth deficiency in the presence of Gram-negative but not of Gram-positive bacteria. We identified a beneficial interaction in a bioA transposon mutant, unable to grow on rich medium. This growth defect could be restored either by addition of biotin or by co-culturing the mutant in the presence of K. pneumoniae or E. coli.Conclusion: Complex interactions take place between the various bacterial species colonizing CF-lungs. This work identified both detrimental and beneficial interactions occurring between P. aeruginosa and three other respiratory pathogens involving several major metabolic pathways. Manipulating these pathways could be used to interfere with bacterial interactions and influence the colonization by respiratory pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.