Global warming is predicted to change ecosystem functioning and structure in Arctic ecosystems by strengthening top-down species interactions, i.e. predation pressure on small herbivores and interference between predators. Yet, previous research is biased towards the summer season. Due to greater abiotic constraints, Arctic ecosystem characteristics might be more pronounced in winter. Here we test the hypothesis that top-down species interactions prevail over bottom-up effects in Scandinavian mountain tundra (Northern Sweden) where effects of climate warming have been observed and top-down interactions are expected to strengthen. But we test this 'a priori' hypothesis in winter and throughout the 3-4 yr rodent cycle, which imposes additional pulsed resource constraints. We used snowtracking data recorded in 12 winters (2004)(2005)(2006)(2007)(2008)(2009)(2010)(2011)(2012)(2013)(2014)(2015) to analyse the spatial patterns of a tundra predator guild (arctic fox Vulpes lagopus, red fox Vulpes vulpes, wolverine Gulo gulo) and small prey (ptarmigan, Lagopus spp). The a priori top-down hypothesis was then tested through structural equation modelling, for each phase of the rodent cycle. There was weak support for this hypothesis, with top-down effects only discerned on arctic fox (weakly, by wolverine) and ptarmigan (by arctic fox) at intermediate and high rodent availability respectively. Overall, bottom-up constraints appeared more influential on the winter community structure. Cold specialist predators (arctic fox and wolverine) showed variable landscape associations, while the boreal predator (red fox) appeared strongly dependent on productive habitats and ptarmigan abundance. Thus, we suggest that the unpredictability of food resources determines the winter ecology of the cold specialist predators, while the boreal predator relies on resource-rich habitats. The constraints imposed by winters and temporary resource lows should therefore counteract productivity-driven ecosystem change and have a stabilising effect on community structure. Hence, the interplay between summer and winter conditions should determine the rate of Arctic ecosystem change in the context of global warming.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.