The human gut functions through a complex system of interactions between the host human tissue and the microbes which inhabit it. These diverse interactions are difficult to model or examine under controlled laboratory conditions.
Microbial metabolism and trophic interactions between microbes give rise to complex multispecies communities in microbe-host systems. Bacteroides thetaiotaomicron (B. theta) is a human gut symbiont thought to play an important role in maintaining host health. Untargeted nuclear magnetic resonance metabolomics revealed B. theta secretes specific organic acids and amino acids in defined minimal medium. Physiological concentrations of acetate and formate found in the human intestinal tract were shown to cause dose-dependent changes in secretion of metabolites known to play roles in host nutrition and pathogenesis. While secretion fluxes varied, biomass yield was unchanged, suggesting feedback inhibition does not affect metabolic bioenergetics but instead redirects carbon and energy to CO2 and H2. Flux balance analysis modeling showed increased flux through CO2-producing reactions under glucose-limiting growth conditions. The metabolic dynamics observed for B. theta, a keystone symbiont organism, underscores the need for metabolic modeling to complement genomic predictions of microbial metabolism to infer mechanisms of microbe-microbe and microbe-host interactions.
IMPORTANCE Bacteroides is a highly abundant taxon in the human gut, and Bacteroides thetaiotaomicron (B. theta) is a ubiquitous human symbiont that colonizes the host early in development and persists throughout its life span. The phenotypic plasticity of keystone organisms such as B. theta is important to understand in order to predict phenotype(s) and metabolic interactions under changing nutrient conditions such as those that occur in complex gut communities. Our study shows B. theta prioritizes energy conservation and suppresses secretion of “overflow metabolites” such as organic acids and amino acids when concentrations of acetate are high. Secreted metabolites, especially amino acids, can be a source of nutrients or signals for the host or other microbes in the community. Our study suggests that when metabolically stressed by acetate, B. theta stops sharing with its ecological partners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.