Background Multiple sclerosis (MS) is a chronic, neurodegenerative disease that causes a range of motor, sensory, and cognitive symptoms. Due to these symptoms, people with MS are at a high risk for falls, fall-related injuries, and reductions in quality of life. There is no cure for MS, and managing symptoms and disease progression is important to maintain a high quality of life. Mobile health (mHealth) apps are commonly used by people with MS to help manage their health. However, there are limited health apps for people with MS designed to evaluate fall risk. A fall risk app can increase access to fall risk assessments and improve self-management. When designing mHealth apps, a user-centered approach is critical for improving use and adoption. Objective The purpose of this study is to undergo a user-centered approach to test and refine the usability of the app through an iterative design process. Methods The fall risk app Steady-MS is an extension of Steady, a fall risk app for older adults. Steady-MS consists of 2 components: a 25-item questionnaire about demographics and MS symptoms and 5 standing balance tasks. Data from the questionnaire and balance tasks were inputted into an algorithm to compute a fall risk score. Two iterations of semistructured interviews (n=5 participants per iteration) were performed to evaluate usability. People with MS used Steady-MS on a smartphone, thinking out loud. Interviews were recorded, transcribed, and developed into codes and themes. People with MS also completed the System Usability Scale. Results A total of 3 themes were identified: intuitive navigation, efficiency of use, and perceived value. Overall, the participants found Steady-MS efficient to use and useful to learn their fall risk score. There were challenges related to cognitive overload during the balance tasks. Modifications were made, and after the second iteration, people with MS reported that the app was intuitive and efficient. Average System Usability Scale scores were 95.5 in both iterations, representing excellent usability. Conclusions Steady-MS is the first mHealth app for people with MS to assess their overall risk of falling and is usable by a subset of people with MS. People with MS found Steady-MS to be usable and useful for understanding their risk of falling. When developing future mHealth apps for people with MS, it is important to prevent cognitive overload through simple and clear instructions and present scores that are understood and interpreted correctly through visuals and text. These findings underscore the importance of user-centered design and provide a foundation for the future development of tools to assess and prevent scalable falls for people with MS. Future steps include understanding the validity of the fall risk algorithm and evaluating the clinical utility of the app.
Seated postural control is essential for wheelchair users to maintain proper position while performing activities of daily living. Clinical tests are commonly used to measure seated postural control, yet they are subjective and lack sensitivity. Lab-based measures are highly sensitive but are limited in scope and restricted to research settings. Establishing a valid, reliable, and accessible measurement tool of seated postural control is necessary for remote, objective assessments. Therefore, the purpose of this study was to examine the validity, reliability, and sensitivity of smartphone-based postural control assessments in wheelchair users. Eleven participants (age: 35.4 ± 17.9) completed two experimental visits 1-week apart consisting of three clinical tests: Trunk Control Test (TCT), Function in Sitting Test (FIST), and Tee-shirt Test, as well as, standardized instrumented balance tasks that manipulated vision (eyes open and closed), and trunk movement (functional reach and stability boundary). During these tasks, participants held a smartphone instrumented with a research-grade accelerometer to their chest. Maximum and root mean square (RMS) acceleration in the medial-lateral (ML) and anterior-posterior (AP) axes were derived. Participants were grouped into non-impaired and impaired postural groups based on FIST scores. Spearman rank-order correlations were conducted between the two devices' outcome measurements and between these measures and those of the clinical tests. Receiver operating characteristic (ROC) curves and the area under the curves (AUC) were determined to distinguish participants with and without impaired postural control. The reliability of outcome variables was assessed using inter-class correlations. Strong correlations between outputs derived from the smartphone and research-grade accelerometer were seen across balance tasks (ρ = −0.75–1.00; p ≤ 0.01). Numerous significant moderate correlations between clinical test outcomes and smartphone and research-grade RMS ML accelerometry were seen (ρ = −0.62 to 0.83 (p ≤ 0.044)]. On both devices, the AUC for ROC plots were significant for RMS ML sway during the eyes open task and functional stability boundary (p < 0.05). Reliability of smartphone accelerometry was comparable to the research-grade accelerometer and clinical tests. This pilot study illustrated that smartphone-based accelerometry may be able to provide a valid and reliable assessment of seated postural control and have the ability to distinguish between those with and without impaired postural control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.