Cultured embryonic neurons develop functional networks that transmit synaptic signals over multiple sequentially connected neurons as revealed by multi-electrode arrays (MEAs) embedded within the culture dish. Signal streams of ex vivo networks contain spikes and bursts of varying amplitude and duration. Despite the random interactions inherent in dissociated cultures, neurons are capable of establishing functional ex vivo networks that transmit signals among synaptically connected neurons, undergo developmental maturation, and respond to exogenous stimulation by alterations in signal patterns. These characteristics indicate that a considerable degree of organization is an inherent property of neurons. We demonstrate herein that (1) certain signal types occur more frequently than others, (2) the predominant signal types change during and following maturation, (3) signal predominance is dependent upon inhibitory activity, and (4) certain signals preferentially follow others in a non-reciprocal manner. These findings indicate that the elaboration of complex signal streams comprised of a non-random distribution of signal patterns is an emergent property of ex vivo neuronal networks.
The nervous system is composed of excitatory and inhibitory neurons. One major class of inhibitory neurons release the neurotransmitter γ-Aminobutyric acid (GABA). GABAergic inhibitory activity maintains the balance that is disrupted in conditions such as epilepsy. At least some GABAergic neurons are initially excitatory and undergo a developmental conversion to convert to inhibitory neurons. The mechanism(s) behind this conversion are thought to include a critical developmental increase in excitatory activity. To test this hypothesis, we subjected ex vivo developing neuronal networks on multi-electrode arrays to various stimulation and pharmacological regimens. Synaptic activity of networks initially consists of epileptiform-like high-amplitude individual "spikes", which convert to organized bursts of activity over the course of approximately 1 month. Stimulation of networks with a digitized synaptic signal for 5days hastened the decrease of epileptiform activity. By contrast, stimulation for a single day delayed the appearance of bursts and instead increased epileptiform signaling. GABA treatment reduced total signals in unstimulated networks and networks stimulated for 5days, but instead increased signaling in networks stimulated for 1day. This increase was prevented by co-treatment with (2R)-amino-5-phosphonopentanoate and 6-cyano-7-nitroquinoxaline-2,3-dione, confirming that GABA invoked excitatory activity in networks stimulated for 1day. Glutamate increased signals in networks subjected to all stimulation regimens; the GABA receptor antagonist bicuculline prevented this increase only in networks stimulated for 1day. These latter findings are consistent with the induction of so-called "mixed" synapses (which release a combination of excitatory and inhibitory neurotransmitters) in networks stimulated for 1day, and support the hypothesis that a critical level of excitatory activity fosters the developmental transition of GABAergic neurons from excitatory to inhibitory.
Photocopying in offices and printing centers releases nanoparticles that can reach the brain following inhalation. We examined whether subcytotoxic levels of airborne photocopy-emitted nanoparticles could potentiate perturbation of synaptic signaling in cultured neurons following exposure to amyloid-β (Aβ). Signaling was only transiently inhibited by Aβ or nanoparticles individually, but remained statistically reduced in cultures receiving both after 24 h. In vitro and in vivo studies with copier emitted nanoparticles have consistently demonstrated inflammation, oxidative stress, and cytotoxicity. Since Aβ can accumulate years before cognitive decline, subcytotoxic levels of nanoparticles are one factor that could potentiate Aβ-induced impairment of synaptic activity during these early stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.