Skeletal muscle mass is negatively regulated by several TGF-β superfamily members. Myostatin (MSTN) is the most prominent negative regulator of muscle mass. Recent studies show that in addition to MSTN, GDF11, which shares high sequence identity with MSTN, induces muscle atrophy in vitro and in vivo at supraphysiological levels, whereas controversy regarding its roles exists. Furthermore, higher circulating GDF11 levels associate with frailty in humans. On the other hand, little is known about the effect of pathophysiological levels of GDF11 on muscle atrophy. Here we seek to determine whether pathophysiological levels of GDF11 are sufficient to activate Smad2/Smad3 signaling and induce muscle atrophy using human iPSC-derived myocytes (hiPSC-myocytes). We first show that incubating hiPSC-myocytes with pathophysiologic concentrations of GDF11 significantly reduces myocyte diameters. We next demonstrate that pathophysiological levels of GDF11 are sufficient to activate Smad2/3 signaling. Finally, we show that pathophysiological levels of GDF11 are capable of inducing the expression of Atrogin-1, an atrophy-promoting E3 ubiquitin ligase and that FOXO1 blockage reverses the GDF11-induced Atrogin-1 expression and atrophic phenotype. Collectively, our results suggest that GDF11 induces skeletal muscle atrophy at the pathophysiological level through the GDF11-FOXO1 axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.