Synapse clustering facilitates circuit integration, learning, and memory. Long-term potentiation (LTP) of mature neurons produces synapse enlargement balanced by fewer spines, raising the question of how clusters form despite this homeostatic regulation of total synaptic weight. Three-dimensional reconstruction from serial section electron microscopy (3DEM) revealed the shapes and distributions of smooth endoplasmic reticulum (SER) and polyribosomes, subcellular resources important for synapse enlargement and spine outgrowth. Compared to control stimulation, synapses were enlarged two hours after LTP on resource-rich spines containing polyribosomes (4% larger than control) or SER (15% larger). SER in spines shifted from a single tubule to complex spine apparatus after LTP. Negligible synapse enlargement (0.6%) occurred on resource-poor spines lacking SER and polyribosomes. Dendrites were divided into discrete synaptic clusters surrounded by asynaptic segments. Spine density was lowest in clusters having only resource-poor spines, especially following LTP. In contrast, resource-rich spines preserved neighboring resource-poor spines and formed larger clusters with elevated total synaptic weight following LTP. These clusters also had more shaft SER branches, which could sequester cargo locally to support synapse growth and spinogenesis. Thus, resources appear to be redistributed to synaptic clusters with LTP-related synapse enlargement while homeostatic regulation suppressed spine outgrowth in resource-poor synaptic clusters.
Treatment with molecularly-targeted therapy has revolutionized cancer care, including BRAF/MEKtargeted melanoma therapy. However responses are heterogenous and frequently not long-lasting. Novel strategies to target resistance are needed. We studied a cohort of patients with resectable metastatic melanoma treated with neoadjuvant BRAF/MEK-targeted therapy (n=52) and noted a strong sexual dimorphism in response to treatment, with female patients demonstrating signi cantly higher rates of a major pathologic response (MPR) (p=0.0001). RNA sequencing of tumors demonstrated enrichment of androgen-related genes in those failing to achieve MPR. Pre-clinical studies validated these ndings, with signi cantly increased tumor growth in male vs female mice treated with BRAF/MEK inhibitors (BRAF/MEKi) (p=0.0005). Androgen receptor (AR) expression was upregulated in tumors of BRAF/MEKitreated mice, and modulation of AR signaling via AR-blockade or castration was associated with signi cantly slower tumor growth (p=0.0001 and p=0.00004, respectively). Together, these results have important implications in the context of treatment with BRAF/MEKi-targeted therapy.
incorrectly included "Medical Oncology for" in the name of the division, and the IRCCS was not included. The errors have been corrected in the HTML and PDF versions of the article.
Major advances in our understanding of the tumor immune microenvironment (TIME) in established cancer have been made, including the influence of host-intrinsic (host genomics) and -extrinsic factors (such as diet and the microbiome) on treatment response. Nonetheless, the immune and microbiome milieu across the spectrum of pre-cancerous tissue and early neoplasia is a growing area of interest. There are emerging data describing the contribution of the immune microenvironment and microbiota on benign and premalignant tissues, with opportunities to target these factors in cancer prevention and interception. Throughout this review, we provide rationale for not only the critical need to further elucidate the premalignant immune microenvironment, but also for the utility of pharmacologic and lifestyle interventions to alter the immune microenvironment of early lesions to reverse carcinogenesis. Novel research methodologies, such as implementing spatial transcriptomics and proteomics, in combination with innovative sampling methods will advance precision targeting of the premalignant immune microenvironment. Additional studies defining the continuum of immune and microbiome evolution, which emerges in parallel with tumor development, will provide novel opportunities for cancer interception at the earliest steps in carcinogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.