Before the advent of intensive forest management and fire suppression, western North American forests exhibited a naturally occurring resistance and resilience to wildfires and other disturbances. Resilience, which encompasses resistance, reflects the amount of disruption an ecosystem can withstand before its structure or organization qualitatively shift to a different basin of attraction. In fire-maintained forests, resilience to disturbance events arose primarily from vegetation pattern-disturbance process interactions at several levels of organization. Using evidence from 15 ecoregions, spanning forests from Canada to Mexico, we review the properties of forests that reinforced qualities of resilience and resistance. We show examples of multi-level landscape resilience, of feedbacks within and among levels, and how conditions have changed under climatic and management influences. We highlight geographic similarities and important differences in the structure and organization of historical landscapes, their forest types, and in the conditions that have changed resilience and resistance to abrupt or large-scale Hessburg et al. Resilience in North American Forests disruptions. We discuss the role of the regional climate in episodically or abruptly reorganizing plant and animal biogeography and forest resilience and resistance to disturbances. We give clear examples of these changes and suggest that managing for resilient forests is a construct that strongly depends on scale and human social values. It involves human communities actively working with the ecosystems they depend on, and the processes that shape them, to adapt landscapes, species, and human communities to climate change while maintaining core ecosystem processes and services. Finally, it compels us to embrace management approaches that incorporate ongoing disturbances and anticipated effects of climatic changes, and to support dynamically shifting patchworks of forest and non-forest. Doing so could make these shifting forest conditions and wildfire regimes less disruptive to individuals and society.
For over 20 years, forest fuel reduction has been the dominant management action in western US forests. These same actions have also been associated with the restoration of highly altered frequent-fire forests. Perhaps the vital element in the compatibility of these treatments is that both need to incorporate the salient characteristics that frequent fire produced—variability in vegetation structure and composition across landscapes and the inability to support large patches of high-severity fire. These characteristics can be achieved with both fire and mechanical treatments. The possible key to convergence of fuel reduction and forest restoration strategies is integrated planning that permits treatment design flexibility and a longer-term focus on fire reintroduction for maintenance. With changing climate conditions, long-term forest conservation will probably need to be focused on keeping tree density low enough (i.e., in the lower range of historic variation) for forest conditions to adapt to emerging disturbance patterns and novel ecological processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.