Using clusters of locations obtained from Global Positioning System (GPS) telemetry collars to identify predation events may allow more efficient estimation of behavioral predation parameters for the study and management of large carnivore predator‐prey systems. Applications of field‐ and model‐based GPS telemetry cluster techniques, however, have met with mixed success. To further evaluate and refine these techniques for cougars (Puma concolor), we used data from visits to 1,735 GPS telemetry clusters, 637 of which were locations where cougars killed prey >8 kg in a multi‐prey system in west‐central Alberta. We tested 1) whether clusters were reliably created at kill locations, 2) the ability of logistic regression models to identify kill occurrence (prey >8 kg) and multinomial regression models to identify the prey species at a kill cluster, and 3) the duration of monitoring required to accurately estimate kill rate and prey composition. We found that GPS collars programmed to attempt location fixes every 3 hours consistently identified locations where prey >8 kg were handled, and cluster creation was robust to GPS location acquisition failures (poor collar fix success). The logistic regression model was capable of estimating cougar kill rate with a mean 5‐fold cross validation error of <10%, provided the appropriate probability cutoff distinguishing kill clusters from non‐kill clusters was selected. Logistic models also can be used to direct visits to clusters, reducing field efforts by as much as 25%, while still locating >95% of all kills. The multinomial model overpredicted occurrence of primary prey (deer) in the diet and underpredicted consumption of alternate prey (e.g., elk and moose) by as much as 100%. We conclude that a purely model‐based approach should be used cautiously and that field visitation is required to obtain reliable information on species, sex, age, or condition of prey. Ultimately, we recommend a combined approach that involves using models to direct field visitation when estimating behavioral predation parameters. Regardless of the monitoring approach, long continuous monitoring periods (i.e., >100 days of a 180‐day period) were necessary to reduce bias and imprecision in kill rate and prey composition estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.