Purpose of Review Assessment of the impact of ocean resolution in Earth System models on the mean state, variability, and future projections and discussion of prospects for improved parameterisations to represent the ocean mesoscale. Recent Findings The majority of centres participating in CMIP6 employ ocean components with resolutions of about 1 degree in their full Earth System models (eddy-parameterising models). In contrast, there are also models submitted to CMIP6 (both DECK and HighResMIP) that employ ocean components of approximately 1/4 degree and 1/10 degree (eddy-present and eddy-rich models). Evidence to date suggests that whether the ocean mesoscale is explicitly represented or parameterised affects not only the mean state of the ocean but also the climate variability and the future climate response, particularly in terms of the Atlantic meridional overturning circulation (AMOC) and the Southern Ocean. Recent developments in scale-aware parameterisations of the mesoscale are being developed and will be included in future Earth System models. Summary Although the choice of ocean resolution in Earth System models will always be limited by computational considerations, for the foreseeable future, this choice is likely to affect projections of climate variability and change as well as other aspects of the Earth System. Future Earth System models will be able to choose increased ocean resolution and/or improved parameterisation of processes to capture physical processes with greater fidelity.
Interest is mounting in developing and utilizing soil-specific soil quality guidelines. This requires quantifying the effects that soil physicochemical properties have on various ecotoxicological endpoints, including phytotoxicity. To this end, 14 agricultural soils from Australia with differing soil properties were spiked with copper (Cu) and zinc (Zn) salts and used to conduct 21-d plant growth inhibition tests using wheat (Triticum aestivum L.) in pot trials. The toxicity of Cu and Zn was similar with 10% effect concentration (EC10) values ranging from 110 to 945 and from 235 to 965 mg/kg, respectively, while the corresponding median effect concentration (EC50) values ranged from 240 to 1,405 and 470 to 1,745 mg/kg, respectively. Copper toxicity values (EC10, EC20, and EC50) were best modeled by the logarithm of cation exchange capacity (CEC) and either soil pH or electrical conductivity. Zinc EC50 and EC20 values were best modeled using the logarithm of CEC, while the EC10 data were best modeled using soil pH and the logarithm of organic carbon. These models generally estimated toxicity within a factor of two of the measured values.
A biophysically robust crop simulation model can assist industry planning and farmer decision‐making via simulation analyses to quantify production potential and production risks. Accordingly, we developed a simple, yet mechanistic peanut simulation model for use in assessing climatic risks to production potential for both irrigated and dryland conditions. The model simulates pod yield, biomass accumulation, crop leaf area, phenology, and soil water balance and is suitable for application over a diverse range of production environments. The model uses a daily time step, utilizes readily available weather and soil information, and assumes no nutrient limitations. The model was tested on numerous data from experiments spanning a broad range of environments in the tropics and subtropics. The model performed satisfactorily, accounting for 89% of the variation in pod yield on data sets derived from independent experiments, which included crops yielding from 1 to 71 t ha−1. Limitations of the model and aspects requiring better understanding to improve quantification are discussed. Despite some limitations, the model attains a useful degree of predictive skill for a broad range of situations and environments. This outcome is testimony to the utility of the simple, generic framework used as the basis for this model. The model is suitable for simulation studies aimed at assisting industry planning and farmer decision‐making.
We report nine cases of irreducible congenital dislocation of the knee which were treated by early operation with good results. All were resistant to conservative measures and operation was performed at an average age of nine months. The essential abnormality was a short quadriceps muscle together with subluxation of the hamstring muscles to lie anterior to the axis of knee flexion. The quadriceps tendon was lengthened by VY-plasty and in six cases additional length was gained by proximal mobilisation of the muscle. After operation all the patients were able to walk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.