We highlight the unexpected impact of nucleosynthesis and other early universe constraints on the detectability of scaling quintessence dynamics at late times, showing that such dynamics may well be invisible until the unveiling of the Stage-IV dark energy experiments (DUNE, JDEM, LSST, SKA). Nucleosynthesis strongly limits potential deviations from ΛCDM. Surprisingly, the standard Chevallier-Polarski-Linder (CPL) parametrisation, w(z) = w0 + waz/(1 + z), cannot match the nucleosynthesis bound for minimally coupled scaling fields. Given that such models are arguably the best-motivated alternatives to a cosmological constant these results may significantly impact future cosmological survey design and imply that dark energy may well be dynamical even if we do not detect any dynamics in the next decade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.