Syn-sedimentary mafic volcanism has been identified within a rift setting (Eocene Tanjung Formation) in the Senakin Peninsula, southeast Kalimantan. Fine-grained, dark-grey basalt lava occurs and has prominent vertically oriented columnar jointing. Petrographically, the basalt is composed of small euhedral pyroxene, olivine, and lath-shaped plagioclase phenocrysts within a very fine-grained dark coloured groundmass. A volcaniclastic unit also occurs and in outcrop has sharp contacts with underlying and overlying sedimentary mudstone. The unit is composed of cm-scale clasts of fine-grained to glassy textured basalt with vesicles of varying size and abundance. Euhedral pyroxene phenocrysts are observed within the clasts, although some with overprinting alteration. Palagonite alteration on the margins of some clasts is noted and is indicative of mafic composition volcanic material that has come into contact with sea water. Presence of bivalve and coral fragments in sandstone and mudstone underlying the volcaniclastic unit indicates emplacement into a marine environment. Core description from 33 locations over an 18 km transect length show that both the basalt and volcaniclastic sediments are extensive throughout the east Senakin area. Lithological relationships and compositional similarities between the basalt and volcaniclastic sediment suggest they are related and were contemporaneous with sedimentation within the Tanjung Formation. It is proposed that the basalt unit is designated the Tanah Rata Basalt Member of the Tanjung Formation. If a wider distribution occurs for the volcaniclastic unit it is proposed that it is termed the Gumbil Volcaniclastic Member of the Tanjung Formation.
Transparent, objective, and repeatable resource assessments should be the goal of companies, investors, and regulators. Different types of resources, however, may require different approaches for their quantification. In particular, coal can be treated both as a solid resource (and thus be mined) as well as a reservoir for gas (which is extracted). In coal mining, investment decisions are made based on a high level of data and establishment of seam continuity and character. The Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code) allows deposits to be characterised based on the level of geological and commercial certainty. Similarly, the guidelines of the Petroleum Resource Management System (PRMS) can be applied to coal seam gas (CSG) deposits to define the uncertainty and chance of commercialisation. Although coal and CSG represent two very different states of resources (i.e., solid vs. gaseous), their categorisation in the JORC Code and PRMS is remarkably similar at a high level. Both classifications have two major divisions: resource vs. reserve. Generally, in either system, resources are considered to have potential for eventual commercial production, but this has not yet been confirmed. Reserves in either system are considered commercial, but uncertainty is still denoted through different subdivisions. Other classification systems that can be applied to CSG also exist, for example the Canadian Oil and Gas Evaluation Handbook (COGEH) and the Chinese Standard (DZ/T 0216-2020) and both have similar high-level divisions to the JORC Code and PRMS. A hypothetical case study of a single area using the JORC Code to classify the coal and PRMS for the gas showed that the two methodologies will have overlapping, though not necessarily aligned, resource and reserve categories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.