The aim of this study was to investigate the relationship between measures of body condition score collected from calving until wk 26 of lactation and reproductive measures (calving interval, days to first heat, days to first service, and conception at first service). Since 1973 sires of cows at the Langhill Dairy Cattle Research Centre have been selected for either high (selection line) or average (control line) genetic merit for fat plus protein. The data included 1211 records from 534 cows calving from 1988 to 1999. At first calving, cows were randomly assigned to one of two ad libitum diets: one that was relatively high in concentrates (approximately 3000 kg/yr) and one that was relatively low in concentrates (approximately 1500 kg/yr). Selection line cows were on average thinner and lost more condition in early lactation than control line cows. Cows that lost condition, those that were thinner than average at wk 10 of lactation and those that were thinner on average over the first 10 wk, had poorer reproductive performance. This effect was greatest in the selection line. Line x diet interaction effects were not statistically significant. Genetic correlations between body condition score and reproductive measures were unfavorable and ranged from -0.04 to -0.54. The relationship between body condition score and production was strong, but, even after adjusting for yield, an unfavorable relationship still exists between body condition score and fertility. Body condition score could be used as a management and selection tool to improve reproductive performance.
Current selection objectives for dairy cattle breeding may be favouring cows that are genetically predisposed to mobilize body tissue. This may have consequences for fertility since cows may resume reproductive activity only once the nadir of negative energy balance (NEB) has passed. In this study, we repeatedly measured food intake, live weight, milk yield and condition score of Holstein cattle in their first lactation. They were given either a high concentrate or low concentrate diet and were either selected or control animals for genetic merit for kg milk fat plus milk protein. Orthogonal polynomials were used to model each trait over time and random regression techniques allowed curves to vary between animals at both the genetic and the permanent environmental levels. Breeding values for bulls were calculated for each trait for each day of lactation. Estimates of genetic merit for energy balance were calculated from combined breeding values for either (1) food intake and milk yield output, or (2) live weight and condition-score changes.When estimated from daily fluxes of energy calculated from food intake and milk output, the average genetic merit of bulls for energy balance was approximately -15 MJ/day in early lactation. It became positive at about day 40 and rose to +18 MJ/day at approximately day 150. When estimated from body energy state changes the NEB in early lactation was also -15 MJ/day. It became positive at about day 80 and then rose to a peak of +10 MJ/day. The difference between the two methods may arise either because of the contribution of food wastage to intake measures or through inadequate predictions of body lipid from equations using live weight and condition score or a combination of both. Body energy mobilized in early lactation was not fully recovered until day 200 of lactation. The results suggest that energy balance may be estimated from changes in body energy state that can be calculated from body weight and condition score. Since body weight can be predicted from linear type measures, it may be possible to calculate breeding values for energy balance from national evaluations for production and type. Energy balance may be more suitable as a breeding objective than persistency.
Results from 4 studies were combined (representing a total of 500 lactations) to investigate the relationships between metabolic parameters and fertility in dairy cows. Information was collected on blood metabolic traits and body condition score at 1 to 2 wk prepartum and at 2, 4, and 7 wk postpartum. Fertility traits were days to commencement of luteal activity, days to first service, days to conception, and failure to conceive. Primiparous and multiparous cows were considered separately. Initial linear regression analyses were used to determine relationships among fertility, metabolic, and endocrine traits at each time point. All metabolic and endocrine traits significantly related to fertility were included in stepwise multiple regression analyses alone (model 1), including peak milk yield and interval to commencement of luteal activity (model 2), and with the further addition of dietary group (model 3). In multiparous cows, extended calving to conception intervals were associated prepartum with greater concentrations of leptin and lesser concentrations of nonesterified fatty acids and urea, and postpartum with reduced insulin-like growth factor-I at 2 wk, greater urea at 7 wk, and greater peak milk yield. In primiparous cows, extended calving to conception intervals were associated with more body condition and more urea prepartum, elevated urea postpartum, and more body condition loss by 7 wk. In conclusion, some metabolic measurements were associated with poorer fertility outcomes. Relationships between fertility and metabolic and endocrine traits varied both according to the lactation number of the cow and with the time relative to calving.
The difference in body lipid between the start and end of lactation represents the body energy lost (or gained) in support of maintaining lactation including the nonproduction components of lactation. This source of energy is ignored in current genetic evaluations for production for dairy sires. The depletion and accretion of body tissue creates a pattern of body energy content over time that is, in part, under genetic control. Using random regression and field data, we modeled changes in body condition score (BCS) and liveweight, predicted from linear type traits, on first parity cows to produce daily breeding values of their sires for energy balance. These curves show that sires differ in the way their daughters lose and regain body energy throughout lactation. For all sires, the overall mean maximum daughter body energy loss was 1499 MJ (SD = 144 MJ) and occurred at d 99 (SD = 12.8 d) of lactation and the mean total daughter body energy loss at d 305 of lactation was 779 MJ (SD = 224 MJ). In this study, the profiles of body energy loss indicate that daughters of most sires lost body energy before d 150 and then recovered body energy, whereas the daughters of a few sires continued to lose body energy through to the end of lactation. Some sires with high merit for production may have daughters with body tissue mobilization profiles associated with poorer health and fertility leading to higher costs. A method of accounting for this cost could be to correct yield for body tissue mobilization. Deducting kilograms of milk from the breeding value for milk for each sire, equivalent in energy content to the body energy lost, resulted in a correlation of 0.98 between the ranking of sires for milk kilograms before and after adjustment. However, some sires changed rank bylarge amounts, the largest being +355 positions. Breeding values for energy balance can be calculated from single observations of BCS and linear type traits on daughters of a sire; data that can routinely be collected in national conformation assessment schemes.
Body condition score (BCS) is a useful tool in assessing the energy status of dairy cattle. Previous research has shown that it is heritable and genetically correlated to reproductive performance. Currently, interest exists in developing selection indexes for fertility that include BCS information. Before such indexes are developed, it is important to assess the genetic covariance between BCS and fertility after fully accounting for the covariance of both traits with milk yield, as indices to predict selection responses require knowledge of these (co)variances. In the present study, calving interval (CI) was used as a measure of reproductive performance. The genetic correlations between BCS and CI before and after genetically adjusting for milk yield were -0.48 and -0.22, respectively. Thus, cows with low BCS have longer CI, which is exacerbated by high levels of milk production. Using selection index theory, we showed that selecting for milk yield alone will result in an increase of 768 kg of milk, an increase of 4.46 d in CI and a reduction of 0.41 BCS units for every standard deviation change in the index. Restricting BCS to no genetic change, whereas still selecting for milk yield will result in an increase of 653.1 kg of milk per standard deviation of the selection index. However, CI will still continue to increase at a rate of 3.20 d per standard deviation of the selection index. The selection indices used here are not optimum, in that they are not economically driven and do not consider all traits that contribute to profitability. However, they demonstrate that, even though restricting BCS may be seen as an attractive way of limiting reliance of body tissue mobilization to fuel milk production, this is unlikely to result in improvements in CI, although the rate of increase in CI will be reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.