BackgroundScientific research in the 21st century is more data intensive and collaborative than in the past. It is important to study the data practices of researchers – data accessibility, discovery, re-use, preservation and, particularly, data sharing. Data sharing is a valuable part of the scientific method allowing for verification of results and extending research from prior results.Methodology/Principal FindingsA total of 1329 scientists participated in this survey exploring current data sharing practices and perceptions of the barriers and enablers of data sharing. Scientists do not make their data electronically available to others for various reasons, including insufficient time and lack of funding. Most respondents are satisfied with their current processes for the initial and short-term parts of the data or research lifecycle (collecting their research data; searching for, describing or cataloging, analyzing, and short-term storage of their data) but are not satisfied with long-term data preservation. Many organizations do not provide support to their researchers for data management both in the short- and long-term. If certain conditions are met (such as formal citation and sharing reprints) respondents agree they are willing to share their data. There are also significant differences and approaches in data management practices based on primary funding agency, subject discipline, age, work focus, and world region.Conclusions/SignificanceBarriers to effective data sharing and preservation are deeply rooted in the practices and culture of the research process as well as the researchers themselves. New mandates for data management plans from NSF and other federal agencies and world-wide attention to the need to share and preserve data could lead to changes. Large scale programs, such as the NSF-sponsored DataNET (including projects like DataONE) will both bring attention and resources to the issue and make it easier for scientists to apply sound data management principles.
The incorporation of data sharing into the research lifecycle is an important part of modern scholarly debate. In this study, the DataONE Usability and Assessment working group addresses two primary goals: To examine the current state of data sharing and reuse perceptions and practices among research scientists as they compare to the 2009/2010 baseline study, and to examine differences in practices and perceptions across age groups, geographic regions, and subject disciplines. We distributed surveys to a multinational sample of scientific researchers at two different time periods (October 2009 to July 2010 and October 2013 to March 2014) to observe current states of data sharing and to see what, if any, changes have occurred in the past 3–4 years. We also looked at differences across age, geographic, and discipline-based groups as they currently exist in the 2013/2014 survey. Results point to increased acceptance of and willingness to engage in data sharing, as well as an increase in actual data sharing behaviors. However, there is also increased perceived risk associated with data sharing, and specific barriers to data sharing persist. There are also differences across age groups, with younger respondents feeling more favorably toward data sharing and reuse, yet making less of their data available than older respondents. Geographic differences exist as well, which can in part be understood in terms of collectivist and individualist cultural differences. An examination of subject disciplines shows that the constraints and enablers of data sharing and reuse manifest differently across disciplines. Implications of these findings include the continued need to build infrastructure that promotes data sharing while recognizing the needs of different research communities. Moving into the future, organizations such as DataONE will continue to assess, monitor, educate, and provide the infrastructure necessary to support such complex grand science challenges.
You are invited to participate in a follow-up to the 2011 ACRL survey of research data practices at academic libraries. You are being contacted because you, or your institution, were part of the original survey. This follow-up survey asks about the research data practices and plans at your library, so please answer from the perspective of the institution. Even if your library is not involved with research data, we would like you to respond to this survey. Every response will help us better understand how libraries are managing (or planning to manage) data and will contribute to building better tools and processes for data management and curation. In addition to demographic information, the survey will ask you how your library participates in data-related activities. As such, no sensitive items are included and the survey therefore poses no foreseeable risk. Also, after data collection, there will be a pre-screening of responses that will include removing or anonymizing any potentially identifying information, thus assuring that the final data set is anonymous. Upon publication of the results of the study, the dataset will be made publically available. The questionnaire should take you, or someone in your office, about 15 minutes to complete. Your participation in this research is voluntary, and you may decline to participate without risk. While it is useful to be complete in your responses to the survey, you may skip any questions, and you are free to withdraw from the study at any time. The data from any questions that were answered before exiting the survey will be recorded.
In order to better understand the current state of data management education in multiple fields of science, this study surveyed scientists, including information scientists, about their data management education practices, including at what levels they are teaching data management, which topics they covering, and what barriers they experience in teaching these topics. We found that a handful of scientists are teaching data management in undergraduate, graduate, and other types of courses, as well as outside of classroom settings. Commonly taught data management topics included quality control, protecting data, and management planning. However, few instructors felt they were covering data management topics thoroughly, and respondents cited barriers such as lack of time, lack of necessary expertise, and lack of information for teaching data management. We offer some potential explanations for the existing state of data management education and suggest areas for further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.