Soil profiles in 10 persistently bare areas (i.e. scalds), mainly located in coastal backswamps of New South Wales, Australia, were examined for chromium-reducible sulfur content and selected chemical properties. At 5 of the sites, the adjacent paddocks with vegetation cover were also examined. All of the tested sites had been affected by the extensive drainage of the surrounding acid sulfate soil (ASS) landscapes and the consequent oxidation of pyrite. All sites had low pH values in the surface soil layers and these low pH values extended for up to 150 cm into the underlying unoxidised blue/grey pyritic estuarine gels. This can be attributed to the downward diffusion of acidity, either produced in the overlying oxidised zones of these soils or transported laterally across the landscape to these low-lying areas. Acidified unoxidised pyritic zones 120 cm thick can evidently form within several decades after drainage disturbance. At the scalded sites the depth from the soil surface to the main pyritic zone varied from the surface to >200 cm depth, indicating that this variable is not critical to ASS scald formation. For most of the sites examined, the chromium-reducible sulfur contents in the surface soil layers were appreciably higher than those in the immediately underlying soil layers. In most of the vegetated sites the chromium-reducible sulfur content in the surface layers was considerably higher than for the adjacent scalded site. The conditions necessary for pyrite formation (i.e. adequate supplies of organic matter, soluble iron, sulfate, and waterlogging) were found to exist at all sites, and the pyrite accumulations in these surface soil layers are considered to be neo-formed. The vegetated soil-profile pyrite and pH results were very similar to their scalded counterparts except that they had an extra 20–40 cm layer of vegetation and mulch that was missing from the scalded profiles. This indicates that there is considerable potential for more extensive scalding in these ASS areas.
Acid sulfate soil (ASS) scalds are persistently bare areas of land, occurring in the coastal backswamps of New South Wales (NSW), Australia. This study aims to understand why particular areas become ASS scalds, while adjacent areas remain vegetated. Some important soil parameters are compared and field observations are summarised. Soil core sampling in both ASS-scalded land and surrounding areas of permanently vegetated paddocks has demonstrated similar pyrite concentrations and depth occurrence, soil salinity, and soil acidity (pH). As conditions are similar beneath both vegetated and non-vegetated land, there must be some additional factors influencing which areas become denuded. Several disparate (usually human-induced) events were found to cause initial loss of vegetative cover. Once the soil is bare, surface evaporation causes toxic solutes to build up quickly at the soil surface and ASS scalding is perpetuated. Some of the intervening events include fire, flood, flood-scouring, deliberate topsoil removal, surface pyrite oxidation, saltwater inundation of freshwater paddocks, saltwater exclusion from saltmarsh or mangroves, changes to the vegetation regimes, excessive vehicular traffic, and over-grazing. Backswamp management needs to ensure that land underlain by shallow pyritic layers (or with soil-water that is enriched with the toxic by-products of pyrite oxidation) is not laid bare by accident or design. Similar soil chemical conditions underlying both ASS scalds and the surrounding permanently vegetated paddocks suggest that much larger areas are potentially at risk of ASS scalding.
Two-metre-deep soil profiles at 10 acid sulfate soil (ASS) scalds along the coast of New South Wales (NSW), Australia, were examined for salinity indicators. At 5 of the sites, permanently vegetated areas adjacent to the ASS-scalded land were also tested. Throughout the profiles, most sites had high soluble chloride (Cl−) concentrations (≤17 mg/g soil) and high soluble sulfate (SO42−) concentrations (≤17 mg/g soil). Very low Cl− : SO42− ratios (≤3) indicated active pyrite oxidation. Soil salinity (measured as electrical conductivity, EC) was extremely high in the top 2 m of most of the ASS scalds when related to the growth requirements of the typical introduced pasture species that were planted in these areas following drainage. This allows salinity, in addition to the extremely low pH of the surface soils, to contribute to land denudation, which can instigate or perpetuate pyrite oxidation and ASS-related land scalding. Although the sites had shallow watertables and soil-moisture content was high, the surface soil (top 0.10 m) of the scalds had consistently higher soluble Cl− and SO42− concentrations and EC than adjacent vegetated areas. All coastal ASS areas investigated, typically freshwater backswamps used for cattle grazing, were underlain by estuarine-derived sediments containing saline ground water. The results demonstrate that revegetation of ASS scalds must include investigation and management of salinity, in addition to acidity, within the soil profile and at the soil surface.
Two revegetation field trials were undertaken on chronically bare acid sulfate soil scalds on grazing properties in the Hawkesbury and Macleay catchments of New South Wales, Australia. The aim was to test the effectiveness of various low cost and readily accessible techniques to encourage revegetation (via existing seedbank or surrounding vegetation) of the scalded sites. The trial at the more efficiently drained Hawkesbury site used a combined treatment of ridging (R), mulching (M) and liming (L) (i.e. R–M–L) compared with a control, within a fenced area. At the more waterlogged Macleay site, various elements of the combined treatment (i.e. R, M, R–M, R–L, R–M–L) were compared with a control, within a fenced area. Vegetation occurrence, biomass and species were tested, along with pertinent soil parameters (pH, salinity, soil moisture, soluble metals). Soil testing was undertaken at 2 depth levels to represent the seed germination zone (0–1 cm), and the potential root zone (1–10 cm). At the Hawkesbury site, the combined treatment (R–M–L) caused significantly greater vegetation occurrence and biomass, lower salinity, higher pH and increased soil moisture. At the Macleay site, results were more variable, but similar to the Hawkesbury trial as the site dried out. Mulching was the single most important treatment. All mulched sites had significantly more vegetation than the control, reaching 100% coverage in the R–M–L plots. Stock exclusion alone produced minimal results. Ridging alone was counterproductive. Liming without mulching caused proliferation of an insubstantial and transient vegetation species (Isolepis inundata). Most interesting was the different vegetation species encouraged by the different mulch treatments: treatment M was dominated by the sedge, Eleocharis acuta; treatment R–M was an even mix of Eleocharis acuta and native water-tolerant grasses (Paspalum distichum and Pseudoraphis paradoxa); treatment R–M–L was dominated by the aforementioned native grasses. These grasses are highly favoured for both economic (highly palatable to stock) and environmental (thick mulch cover, self seeding) objectives. The results demonstrate that revegetation of acid sulfate soil scalds is possible, and different treatments can influence vegetation species composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.